【題目】若點A、B、C在數(shù)軸上對應(yīng)的數(shù)分別為a、b、c滿足|a+5|+|b-1|+|c-2|=0.
(1)在數(shù)軸上是否存在點P,使得PA+PB=PC?若存在,求出點P對應(yīng)的數(shù);若不存在,請說明理由;
(2)若點A,B,C同時開始在數(shù)軸上分別以每秒1個單位長度,每秒3個單位長度,每秒5個單位長度沿著數(shù)軸負(fù)方向運動.經(jīng)過t(t≥1)秒后,試問AB-BC的值是否會隨著時間t的變化而變化?請說明理由.
【答案】(1)-4或-6;(2)當(dāng)1≤t<3時,AB-BC的值會隨著時間t的變化而變化.當(dāng)t≥3時,AB-BC的值不會隨著時間t的變化而變化,理由詳見解析.
【解析】
(1)根據(jù)非負(fù)數(shù)的性質(zhì)可求a=-5,b=1,c=2,設(shè)點P表示的數(shù)為x,分①P在AB之間,②P在A的左邊,③P在BC的中間,④P在C的右邊,進(jìn)行討論即可求解;
(2)表示出點A表示的數(shù)為-5-t,點B表示的數(shù)為1-3t,點C表示的數(shù)為2-5t,分①當(dāng)1-3t>-5-t,即t<3時,②當(dāng)t≥3時,進(jìn)行討論即可求解.
解:(1)∵|a+5|+|b-1|+|c-2|=0,
∴a+5=0,b-1=0,c-2=0,
解得a=-5,b=1,c=2,
設(shè)點P表示的數(shù)為x,
∵PA+PB=PC,
①P在AB之間,
[x-(-5)]+(1-x)=2-x,
x+5+1-x=2-x,
x=2-1-5,
x=-4;
②P在A的左邊,
(-5-x)+(1-x)=2-x,
-5-x+1-x=2-x,
-x=2-1+5,
x=-6;
③P在BC的中間,
(5+x)+(x-1)=2-x,
2x+4=2-x,
3x=-2,
x=-(舍去);
④P在C的右邊,
(x+5)+(x-1)=x-2,
2x+4=x-2,
x=-6(舍去).
綜上所述,x=-4或x=-6.
(2)∵運動時間為t(t≥1),
A的速度為每秒1個單位長度,B的速度為每秒3個單位長度,C的速度為每秒5個單位長度,
∴點A表示的數(shù)為-5-t,點B表示的數(shù)為1-3t,點C表示的數(shù)為2-5t,
①當(dāng)1-3t>-5-t,即t<3時,
AB=(1-3t)-(-5-t)=-2t+6,
BC=(1-3t)-(2-5t)=2t-1,
AB-BC=(-2t+6)-(2t-1)=7-4t,
∴AB-BC的值會隨著時間t的變化而變化.
②當(dāng)t≥3時,
AB=(-5-t)-(1-3t)=2t-6,
BC=(1-3t)-(2-5t)=2t-1,
AB-BC=(2t-6)-(2t-1)=-5,
∴AB-BC的值不會隨著時間t的變化而變化.
綜上所述,當(dāng)1≤t<3時,AB-BC的值會隨著時間t的變化而變化.當(dāng)t≥3時,AB-BC的值不會隨著時間t的變化而變化.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】七中育才學(xué)校排球活動月即將開始,其中有一項為墊球比賽,體育組為了了解七年級學(xué)生的訓(xùn)練情況,隨機抽取了七年級部分學(xué)生進(jìn)行1分鐘墊球測試,并將這些學(xué)生的測試成績(即1分鐘的個數(shù),且這些測試成績都在60~180范圍內(nèi))分段后給出相應(yīng)等級,具體為:測試成績在60~90范圍內(nèi)的記為D級,90~120范圍內(nèi)的記為C級,120~150范圍內(nèi)的記為B級,150~180范圍內(nèi)的記為A級.現(xiàn)將數(shù)據(jù)整理繪制成如下兩幅不完整的統(tǒng)計圖,其中在扇形統(tǒng)計圖中A級對應(yīng)的圓心角為90°,請根據(jù)圖中的信息解答下列問題:
(1)在扇形統(tǒng)計圖中,A級所占百分比為 ;
(2)在這次測試中,一共抽取了 名學(xué)生,并補全頻數(shù)分布直方圖;
(3)在(2)中的基礎(chǔ)上,在扇形統(tǒng)計圖中,求D級對應(yīng)的圓心角的度數(shù);
(4)若A,B,C,D等級的平均成績分別為165、135、105、75個,你能估算出學(xué)校七年級同學(xué)的平均水平嗎?若能,請計算出來.(保留準(zhǔn)確值)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E是ABCD的邊CD的中點,延長AE交BC的延長線于點F.
(1)求證:△ADE≌△FCE.
(2)若∠BAF=90°,BC=5,EF=3,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2﹣mx﹣3(m>0)交y軸于點C,CA⊥y軸,交拋物線于點A,點B在拋物線上,且在第一象限內(nèi),BE⊥y軸,交y軸于點E,交AO的延長線于點D,BE=2AC.
(1)用含m的代數(shù)式表示BE的長.
(2)當(dāng)m= 時,判斷點D是否落在拋物線上,并說明理由.
(3)若AG∥y軸,交OB于點F,交BD于點G.
①若△DOE與△BGF的面積相等,求m的值.
②連結(jié)AE,交OB于點M,若△AMF與△BGF的面積相等,則m的值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩個直角∠AOC和∠BOD有公共頂點O,下列結(jié)論:
①∠AOB=∠COD;
②∠AOB+∠COD=;
③若OB平分∠AOC,則OC平分∠BOD;
④∠AOD的平分線與∠BOC的平分線是同一條射線,
其中正確的是 .(填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù) ,下列結(jié)論中,不正確的是( 。
A.圖象必經(jīng)過點(1,2)
B.y隨x的增大而增大
C.圖象在第一、三象限內(nèi)
D.若x>1,則0<y<2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把2016個正整數(shù)1、2、3、4、……、2016按如圖方式排列成一個表,用一方框按如圖所示的方式任意框住9個數(shù).(方框只能平移)
(1)若框住的9個數(shù)中,正中間的一個數(shù)為39,則:這九個數(shù)的和為__________.
(2)方框能否框住這樣的9個數(shù),它們的和等于2016?若能,請寫出這9個數(shù);若不能,請說明理由。
(3)若任意框住9個數(shù)的和記為S,則:S的最大值與最小值之差等于__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com