【題目】在平面直角坐標(biāo)系xOy中,拋物線y=﹣2x2+(m+9)x﹣6的對稱軸是x=2.
(1)求拋物線表達(dá)式和頂點坐標(biāo);
(2)將該拋物線向右平移1個單位,平移后的拋物線與原拋物線相交于點A,求點A的坐標(biāo);
(3)拋物線y=﹣2x2+(m+9)x﹣6與y軸交于點C,點A關(guān)于平移后拋物線的對稱軸的對稱點為點B,兩條拋物線在點A、C和點A、B之間的部分(包含點A、B、C) 記為圖象M.將直線y=2x﹣2向下平移b(b>0)個單位,在平移過程中直線與圖象M始終有兩個公共點,請你寫出b的取值范圍 .
【答案】
(1)解:∵拋物線y=﹣2x2+(m+9)x﹣6的對稱軸是x=2,
∴ .
∴m=﹣1.
∴拋物線的表達(dá)式為y=﹣2x2+8x﹣6.
∴y=﹣2(x﹣2)2+2.
∴頂點坐標(biāo)為(2,2)
(2)解:由題意得,平移后拋物線表達(dá)式為y=﹣2(x﹣3)2+2,
∵﹣2(x﹣2)2=﹣2(x﹣3)2,
∴ .
∴A( , )
(3)0<b≤
【解析】解:(3)點A坐標(biāo)為( , ),
則點B的坐標(biāo)為( , ),
設(shè)直線y=2x﹣2向下平移b(b>0)個單位經(jīng)過點B,
則y=2x﹣2﹣b,
故 =7﹣2﹣b,
解得b= ,
平移過程中直線與圖象M始終有兩個公共點,則 .
【考點精析】認(rèn)真審題,首先需要了解二次函數(shù)的性質(zhì)(增減性:當(dāng)a>0時,對稱軸左邊,y隨x增大而減。粚ΨQ軸右邊,y隨x增大而增大;當(dāng)a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小),還要掌握二次函數(shù)圖象的平移(平移步驟:(1)配方 y=a(x-h)2+k,確定頂點(h,k)(2)對x軸左加右減;對y軸上加下減)的相關(guān)知識才是答題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某快遞公司的快遞員小李騎摩托車從公司M處向西行駛了3km到達(dá)A地送貨后,繼續(xù)向西行駛1km到達(dá)B地送貨,接著向東行駛了9km到達(dá)C地送貨,然后又繼續(xù)向東行駛了2km到達(dá)D處家的位置.
(1)以公司為原點,向東為正方向畫出數(shù)軸,并在數(shù)軸上標(biāo)出A、B、C、D的位置;
(2)公司距離他家多遠(yuǎn)?
(3)若每千米用油0.08升,則小李本次出發(fā)共用油多少升?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是張亮、李娜兩位同學(xué)零花錢全學(xué)期各項支出的統(tǒng)計圖.根據(jù)統(tǒng)計圖,下列對兩位同學(xué)購買書籍支出占全學(xué)期總支出的百分比作出的判斷中,正確的是( )
A. 張亮的百分比比李娜的百分比大 B. 張娜的百分比比張亮的百分比大
C. 張亮的百分比與李娜的百分比一樣大 D. 無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為4的正方形ABCD中,對角線AC,BD相交于點O,點E是AD邊上一點,連接CE,把△CDE沿CE翻折,得到△CPE,EP交AC于點F,CP交BD于點G,連接PO,若PO∥BC,則四邊形OFPG的面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的直徑AB=4,∠ABC=30°,BC交⊙O于D,D是BC的中點.
(1)求BC的長;
(2)過點D作DE⊥AC,垂足為E,求證:直線DE是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》中記載了這樣一道題:“今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,問徑幾何?”用現(xiàn)代的語言表述為:“如果AB為⊙O的直徑,弦CD⊥AB于E,AE=1寸,CD=10寸,那么直徑AB的長為多少寸?”請你補全示意圖,并求出AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,直線 與x軸交于點A ,與y 軸交于點B,直線 與x軸交于點C,與直線交于點P.
(1)當(dāng)k=1 時,求點C的坐標(biāo);
(2)如圖 1,點D為PA的中點,過點D作DE⊥x軸于E,交直線于點F,若DF=2DE,求k的值;
(3)如圖2,點P在第二象限內(nèi),PM⊥x軸于M,以PM為邊向左作正方形PMNQ,NQ 的延長線交直線于點R,若PR=PC,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)在一次九年級數(shù)學(xué)做了檢測中,有一道滿分8分的解答題,按評分標(biāo)準(zhǔn),所有考生的得分只有四種:0分,3分,5分,8分.老師為了了解學(xué)生的得分情況與題目的難易情況,從全區(qū)4500名考生的試卷中隨機抽取一部分,通過分析與整理,繪制了如下兩幅圖不完整的統(tǒng)計圖.
請根據(jù)以上信息解答下列問題:
(1)填空:a= ,b= ,并把條形統(tǒng)計圖補全;
(2)請估計該地區(qū)此題得滿分(即8分)的學(xué)生人數(shù);
(3)已知難度系數(shù)的計算公式為L=,其中L為難度系數(shù),X為樣本平均得分,W為試題滿分值.一般來說,根據(jù)試題的難度系數(shù)可將試題分為以下三類:當(dāng)0<L≤0.4時,此題為難題;當(dāng)0.4<L≤0.7時,此題為中等難度試題;當(dāng)0.7<L<1時,此題為容易題.試問此題對于該地區(qū)的九年級學(xué)生來說屬于哪一類?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一股民上星期五買進某公司股票股,每股元,下表為本周內(nèi)每日該股票的漲跌情況(單位:元)
星期 | 一 | 二 | 三 | 四 | 五 |
每股漲跌 |
星期三收盤時,每股是________元;
本周內(nèi)每股最高價為________元,每股最低價為________元;
已知該股民買進股票時付了‰的手續(xù)費,賣出時還需付成交額‰的手續(xù)費和‰的交易銳,如果該股民在星期五收盤前將全部股票賣出,他的收益情況如何?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com