【題目】如圖,∠BAC的平分線與BC的垂直平分線相交于點D,DE⊥AB,DF⊥AC,垂足分別為E、F,AB=6,AC=3,則BE長度為( )
A.1B.1.5C.2D.2.5
【答案】B
【解析】
首先連接CD,BD,由∠BAC的平分線與BC的垂直平分線相交于點D,DE⊥AB,DF⊥AC,根據角平分線的性質與線段垂直平分線的性質,易得CD=BD,DF=DE,繼而可得AF=AE,易證得Rt△CDF≌Rt△BDE,則可得BE=CF,繼而求得答案.
連接CD,BD,
∵AD是∠BAC的平分線,DE⊥AB,DF⊥AC,
∴DF=DE,∠F=∠DEB=90°,∠ADF=∠ADE,
∴AE=AF,
∵DG是BC的垂直平分線,
∴CD=BD,
在Rt△CDF和Rt△BDE中,
,
∴Rt△CDF≌Rt△BDE(HL),
∴BE=CF,
∴AB=AE+BE=AF+BE=AC+CF+BE=AC+2BE,
∵AB=6,AC=3,
∴BE=1.5.
故選:B.
科目:初中數學 來源: 題型:
【題目】我們知道,對于一個圖形,通過2種不同的方法計算它的面積時,可以得到一個數學等式.例如圖①可以得到,請解答下列問題:
(1)寫出圖②中所表示的等式: ;
(2)利用(1)中所得到的結論,解決下面的問題:已知,,求的值;
(3)小明同學用2張邊長為的正方形紙片、3張邊長為的正方形紙片,5張邊長分別為的長方形紙片拼出了一個長方形,那么該長方形較長一邊的長為多少?
(4)小明同學又用張邊長為的正方形紙片,張邊長為的正方形紙片、張邊長分別為的長方形紙片拼出了一個面積為的長方形,請問一共用掉多少張紙片?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,動點P從點B出發(fā)沿射線BC以1cm/s的速度移動,設運動的時間為t秒.
(1)求BC邊的長;
(2)當△ABP為直角三角形時,求t的值;
(3)當△ABP為等腰三角形時,求t的值
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點A.B在反比例函數y=的圖象上,且點A,B的橫坐標分別為a,2a(a<0),若S△AOB=3,則k的值為( 。
A.5B.-5C.4D.-4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線與x軸交于點,與y軸交于點B,拋物線經過點.
求k的值和拋物線的解析式;
為x軸上一動點,過點M且垂直于x軸的直線與直線AB及拋物線分別交于點.
若以O,B,N,P為頂點的四邊形OBNP是平行四邊形時,求m的值.
當 時,求m的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(本題8分)如圖,在五邊形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.
(1)求證:△ABC≌△AED;
(2)當∠B=140°時,求∠BAE的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD和四邊形CEFG都是正方形,且BC=CD,CE=CG,∠BCD=∠GCE=90°.
(1)求證:△BCG≌△DCE;
(2)求證:BG⊥DE.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我國是世界上嚴重缺水的國家之一.為了倡導“節(jié)約用水從我做起”,小剛在他所在班的50名同學中,隨機調查了10名同學家庭中一年的月均用水量(單位:t),并將調查結果繪成了如下的條形統(tǒng)計圖
【1】求這10個樣本數據的平均數、眾數和中位數;
【2】根據樣本數據,估計小剛所在班50名同學家庭中月均用水量不超過7 t的約有多少戶.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖AB是⊙O的切線,切點為B,AO交⊙O于點C,過點C作DC⊥OA,交AB于點D.
(1)求證:∠CDO=∠BDO;
(2)若∠A=30°,⊙O的半徑為4,求陰影部分的面積(結果保留π).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com