【題目】如圖,在菱形ABCD中,AC,BD相交于點O,E為AB的中點,DE⊥AB.
(1)求∠ABC的度數(shù);
(2)如果 ,求DE的長.
【答案】
(1)解:∵E為AB的中點,DE⊥AB,
∴AD=DB,
∵四邊形ABCD是菱形,
∴AB=AD,
∴AD=DB=AB,
∴△ABD為等邊三角形.
∴∠DAB=60°.
∵菱形ABCD的邊AD∥BC,
∴∠ABC=180°﹣∠DAB=180°﹣60°=120°,
即∠ABC=120°
(2)解:∵四邊形ABCD是菱形,
∴BD⊥AC于O,AO= AC= ×4 =2 ,
由(1)可知DE和AO都是等邊△ABD的高,
∴DE=AO=2
【解析】(1)根據(jù)線段垂直平分線上的點到線段兩端點的距離相等可得AD=BD,再根據(jù)菱形的四條邊都相等可得AB=AD,然后求出AB=AD=BD,從而得到△ABD是等邊三角形,再根據(jù)等邊三角形的性質求出△DAB=60°,然后根據(jù)兩直線平行,同旁內角互補求解即可;(2)根據(jù)菱形的對角線互相平分求出AO,再根據(jù)等邊三角形的性質可得DE=AO.
科目:初中數(shù)學 來源: 題型:
【題目】△ABC和△DEF是兩個全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的頂點E與△ABC的斜邊BC的中點重合,將△DEF繞點E旋轉,旋轉過程中,線段DE與線段AB相交于點P,線段EF與射線CA相交于點Q.
(1)如圖①,當點Q在線段AC上,且AP=AQ時,求證:△BPE≌△CQE;
(2)如圖②,當點Q在線段CA的延長線上時,求證:△BPE∽△CEQ;并求當BP=2,CQ=9時BC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角梯形ABCD中,AD∥BC,∠B=90°,AG∥CD交BC于點G,點E、F分別為AG、CD的中點,連接DE、FG.
(1)求證:四邊形DEGF是平行四邊形;
(2)當點G是BC的中點時,求證:四邊形DEGF是菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠CAB=75°,在同一平面內,將△ABC繞點A旋轉到△AB′C′的位置,使得CC′∥AB,則∠BAB′=( )
A.30°
B.35°
C.40°
D.50°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖四邊形ABCD是菱形,且∠ABC=60,△ABE是等邊三角形,M為對角線BD(不含B點)上任意一點,將BM繞點B逆時針旋轉60°得到BN,連接EN、AM、CM,則下列五個結論中正確的是( )
①若菱形ABCD的邊長為1,則AM+CM的最小值1;
②△AMB≌△ENB;
③S四邊形AMBE=S四邊形ADCM;
④連接AN,則AN⊥BE;
⑤當AM+BM+CM的最小值為2 時,菱形ABCD的邊長為2.
A.①②③
B.②④⑤
C.①②⑤
D.②③⑤
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將矩形ABCD置于平面直角坐標系中,其中AD邊在x軸上,AB=2,直線MN:y=x﹣4沿x軸的負方向以每秒1個單位的長度平移,設在平移過程中該直線被矩形ABCD的邊截得的線段長度為m,平移時間為t,m與t的函數(shù)圖象如圖2所示.
(1)點A的坐標為 , 矩形ABCD的面積為;
(2)求a,b的值;
(3)在平移過程中,求直線MN掃過矩形ABCD的面積S與t的函數(shù)關系式,并寫出自變量t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O的半徑OD垂直于弦AB,垂足為點C,連接AO并延長交⊙O于點E,連接BE,CE.若AB=8,CD=2,則△BCE的面積為( )
A.12
B.15
C.16
D.18
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com