【題目】如圖,將矩形ABCD置于平面直角坐標(biāo)系中,其中AD邊在x軸上,AB=2,直線MN:y=x﹣4沿x軸的負方向以每秒1個單位的長度平移,設(shè)在平移過程中該直線被矩形ABCD的邊截得的線段長度為m,平移時間為t,m與t的函數(shù)圖象如圖2所示.

(1)點A的坐標(biāo)為 , 矩形ABCD的面積為;
(2)求a,b的值;
(3)在平移過程中,求直線MN掃過矩形ABCD的面積S與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.

【答案】
(1)(1,0);8
(2)

解:如圖1所示;當(dāng)直線MN經(jīng)過點B時,直線MN交DA于點E.

∵點A的坐標(biāo)為(1,0),

∴點B的坐標(biāo)為(1,2)

設(shè)直線MN的解析式為y=x+c,

將點B的坐標(biāo)代入得;1+c=2.

∴c=1.

∴直線MN的解析式為y=x+1.

將y=0代入得:x+1=0,解得x=﹣1,

∴點E的坐標(biāo)為(﹣1,0).

∴BE= = =2

∴a=2

如圖2所示,當(dāng)直線MN經(jīng)過點C時,直線MN交x軸于點F.

∵點D的坐標(biāo)為(﹣3,0),

∴點C的坐標(biāo)為(﹣3,2).

設(shè)MN的解析式為y=x+d,將(﹣3,2)代入得:﹣3+d=2,解得d=5.

∴直線MN的解析式為y=x+5.

將y=0代入得x+5=0,解得x=﹣5.

∴點F的坐標(biāo)為(﹣5,0).

∴b=4﹣(﹣5)=9


(3)

解:當(dāng)0≤t<3時,直線MN與矩形沒有交點.

∴s=0.

當(dāng)3≤t<5時,如圖3所示;

S= = = ;

當(dāng)5≤t<7時,如圖4所示:過點B作BG∥MN.

由(2)可知點G的坐標(biāo)為(﹣1,0).

∴FG=t﹣5.

∴S=SBEFG+SABG=2(t﹣5)+ =2t﹣8.

當(dāng)7≤t≤9時,如圖5所示.

FD=t﹣7,CF=2﹣DF=2﹣(t﹣7)=9﹣t.

S=SABCD﹣SCEF=8﹣ =

綜上所述,S與t的函數(shù)關(guān)系式為S=


【解析】解:(1)令直線y=x﹣4的y=0得:x﹣4=0,解得:x=4,
∴點M的坐標(biāo)為(4,0).
由函數(shù)圖象可知:當(dāng)t=3時,直線MN經(jīng)過點A,
∴點A的坐標(biāo)為(1,0)
沿x軸的負方向平移3個單位后與矩形ABCD相交于點A,
∵y=x﹣4沿x軸的負方向平移3個單位后直線的解析式是:y=x+3﹣4=x﹣1,
∴點A的坐標(biāo)為 (1,0);
由函數(shù)圖象可知:當(dāng)t=7時,直線MN經(jīng)過點D,
∴點D的坐標(biāo)為(﹣3,0).
∴AD=4.
∴矩形ABCD的面積=ABAD=4×2=8.
【考點精析】本題主要考查了圖形的平移和平移的性質(zhì)的相關(guān)知識點,需要掌握對應(yīng)線段,對應(yīng)點所連線段平行(或在同一直線上)且相等;對應(yīng)角相等;平移方向和距離是它的兩要素;①經(jīng)過平移之后的圖形與原來的圖形的對應(yīng)線段平行(或在同一直線上)且相等,對應(yīng)角相等,圖形的形狀與大小都沒有發(fā)生變化;②經(jīng)過平移后,對應(yīng)點所連的線段平行(或在同一直線上)且相等才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,E為BC邊上的一點,且AE與DE分別平分∠BAD和∠ADC

(1)求證:AE⊥DE;
(2)設(shè)以AD為直徑的半圓交AB于F,連結(jié)DF交AE于G,已知CD=5,AE=8.
①求BC的長;
②求 值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,AC,BD相交于點O,E為AB的中點,DE⊥AB.

(1)求∠ABC的度數(shù);
(2)如果 ,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩名隊員參加射擊訓(xùn)練,成績分別被制成下列兩個統(tǒng)計圖:

根據(jù)以上信息,整理分析數(shù)據(jù)如下:

平均成績/環(huán)

中位數(shù)/環(huán)

眾數(shù)/環(huán)

方差

a

7

7

1.2

7

b

8

c


(1)寫出表格中a,b,c的值;
(2)分別運用表中的四個統(tǒng)計量,簡要分析這兩名隊員的射擊訓(xùn)練成績.若選派其中一名參賽,你認為應(yīng)選哪名隊員?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分線EF分別交AD、BC于點E、F,垂足為O.
(1)如圖1,連接AF、CE.求證四邊形AFCE為菱形,并求AF的長;

(2)如圖2,動點P、Q分別從A、C兩點同時出發(fā),沿△AFB和△CDE各邊勻速運動一周.即點P自A→F→B→A停止,點Q自C→D→E→C停止.在運動過程中,
①已知點P的速度為每秒5cm,點Q的速度為每秒4cm,運動時間為t秒,當(dāng)A、C、P、Q四點為頂點的四邊形是平行四邊形時,求t的值.
②若點P、Q的運動路程分別為a、b(單位:cm,ab≠0),已知A、C、P、Q四點為頂點的四邊形是平行四邊形,求a與b滿足的數(shù)量關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】五一期間,小紅到美麗的世界地質(zhì)公園湖光巖參加社會實踐活動,在景點P處測得景點B位于南偏東45°方向;然后沿北偏東60°方向走100米到達景點A,此時測得景點B正好位于景點A的正南方向,求景點A與B之間的距離.(結(jié)果精確到0.1米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC與△DEF均為等邊三角形,O為BC、EF的中點,則AD:BE的值為(
A. :1
B. :1
C.5:3
D.不確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xoy中,已知拋物線經(jīng)過點A(0,4),B(1,0),C(5,0),拋物線對稱軸l與x軸相交于點M.

(1)求拋物線的解析式和對稱軸;
(2)點P在拋物線上,且以A、O、M、P為頂點的四邊形四條邊的長度為四個連續(xù)的正整數(shù),請你直接寫出點P的坐標(biāo);
(3)連接AC.探索:在直線AC下方的拋物線上是否存在一點N,使△NAC的面積最大?若存在,請你求出點N的坐標(biāo);若不存在,請你說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是菱形,⊙O經(jīng)過點A、C、D,與BC相交于點E,連接AC、AE.若∠D=78°,則∠EAC=°.

查看答案和解析>>

同步練習(xí)冊答案