【題目】已知:,,,,垂足分別為,,
(1)如圖1,①線段和的數(shù)量關(guān)系是__________;
②請寫出線段,,之間的數(shù)量關(guān)系并證明.
(2)如圖2,若已知條件不變,上述結(jié)論②還成立嗎?如果不成立,請直接寫出線段,,之間的數(shù)量關(guān)系.
【答案】(1)①.②結(jié)論:,理由見解析;(2)
【解析】
(1)①結(jié)論:CD=BE;②結(jié)論:AD=BE+DE,只要證明△ACD≌△CBE,即可解決問題.
(2)結(jié)論不成立.結(jié)論:DE=AD+BE.證明方法類似(1).
(1)①.
理由如下:
∵AD⊥CM,BE⊥CM,
∴∠ACB=∠BEC=∠ADC=90°,
∴∠ACD+∠BCE=90°,∠BCE+∠CBE=90°,
∴∠ACD=∠CBE,
在△ACD和△CBE中,
,
∴△ACD≌△CBE,
∴CD=BE.
②結(jié)論:.
理由如下:
由①得:△ACD≌△CBE,
,
,
.
(2)②中的結(jié)論不成立.結(jié)論:DE=AD+BE.
理由如下:
∵AD⊥CM,BE⊥CM,
∴∠ACB=∠BEC=∠ADC=90°,
∴∠ACD+∠BCE=90°,∠BCE+∠B=90°,
∴∠ACD=∠B,
在△ACD和△CBE中,
,
∴△ACD≌△CBE,
∴AD=CE,CD=BE,
∵DE=CD+CE=BE+AD,
∴DE=AD+BE.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)甲、乙兩校參加市教育局舉辦的初中生英語口語競賽,兩校參賽人數(shù)相等.比賽結(jié)束后,發(fā)現(xiàn)學(xué)生成績分別為7分、8分、9分、10分(滿分為10分).依據(jù)統(tǒng)計數(shù)據(jù)繪制了如下尚不完整的統(tǒng)計圖表.
分?jǐn)?shù) | 7分 | 8分 | 9分 | 10分 |
人數(shù) | 11 | 0 |
| 8 |
(1)請將甲校成績統(tǒng)計表和圖2的統(tǒng)計圖補充完整;
(2)經(jīng)計算,乙校的平均分是8.3分,中位數(shù)是8分,請寫出甲校的平均分、中位數(shù);并從平均分和中位數(shù)的角度分析哪個學(xué)校成績較好.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AC、BD相交于點O,過點A作BD的平行線AE交CB的延長線于點E.
(1)求證:BE=BC;
(2)過點C作CF⊥BD于點F,并延長CF交AE于點G,連接OG.若BF=3,CF=6,求四邊形BOGE的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a+b=1,ab=﹣1,設(shè)S1=a+b,S2=a2+b2,S3=a3+b3,…,Sn=an+bn
(1)計算S2.
(2)請閱讀下面計算S3的過程:
∵a+b=1,ab=﹣1
∴S3=a3+b3=(a+b)(a2+b2)﹣ab(a+b)=1×S2﹣(﹣1)=S2+1= .
你讀懂了嗎?請你先填空完成(2)中S3的計算結(jié)果,再用你學(xué)到的方法計算S4
(3)試寫出Sn﹣2,Sn﹣1,Sn三者之間的數(shù)量關(guān)系式(不要求證明,且n是不小于2的自然數(shù)),根據(jù)得出的數(shù)量關(guān)系計算S7.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC邊于點D.以AB上一點O為圓心作⊙O,使⊙O經(jīng)過點A和點D.
(1)判斷直線BC與⊙O的位置關(guān)系,并說明理由;
(2)若AC=3,∠B=30°,設(shè)⊙O與AB邊的另一個交點為E,求線段BD,BE與劣弧所圍成的陰影部分的面積(結(jié)果保留根號和)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)(a、b、c為常數(shù)且a≠0)中的x與y的部分對應(yīng)值如下表:
x | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | 5 |
y | 12 | 5 | 0 | ﹣3 | ﹣4 | ﹣3 | 0 | 5 | 12 |
給出了結(jié)論:
(1)二次函數(shù)有最小值,最小值為﹣3;
(2)當(dāng)時,y<0;
(3)二次函數(shù)的圖象與x軸有兩個交點,且它們分別在y軸兩側(cè).
則其中正確結(jié)論的個數(shù)是
A. 3 B. 2 C. 1 D. 0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,Rt△ABC和Rt△ABD中,∠ACB=∠ADB=90°,E為AB中點.
(1)若兩個直角三角形的直角頂點在AB的異側(cè)(如圖1),連接CD,取CD中點F,連接EF、DE、CE,則DE與CE數(shù)量關(guān)系為 ,EF與CD位置關(guān)系為 ;
(2)若兩個直角三角形的直角頂點在AB的同側(cè)(如圖2),連接CD、DE、CE.
①若∠CAB=25°,∠DBA=35°,判斷△DEC的形狀,并說明理由;
②若∠CAB+∠DBA=,當(dāng)為多少度時,△DEC為等腰直角三角形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊中,,關(guān)于軸對稱,交軸負(fù)半軸于點,.
(1)如圖1,求點坐標(biāo);
(2)如圖2,為軸負(fù)半軸上任一點,以為邊作等邊,的延長線交軸于點,求的長;
(3)如圖3,在(1)的條件下,以為頂點作的角,它的兩邊分別與、交于點和,連接.探究線段、、之間的關(guān)系,并子以證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com