【題目】如圖,一次函數(shù)y=﹣x+3的圖象與反比例函數(shù)y=(k≠0)在第一象限的圖象交于A(1,a)和B兩點(diǎn),與x軸交于點(diǎn)C.
(1)求反比例函數(shù)的解析式;
(2)若點(diǎn)P在x軸上,且△APC的面積為5,求點(diǎn)P的坐標(biāo);
(3)直接寫出不等式﹣x+3<的解集.
【答案】(1)y=;(2)P的坐標(biāo)為(﹣2,0)或(8,0);(3)0<x<1或x>2.
【解析】
(1)利用點(diǎn)A在y=﹣x+3上求a,進(jìn)而代入反比例函數(shù)y=(k≠0)求k即可;
(2)設(shè)P(x,0),求得C點(diǎn)的坐標(biāo),則PC=|3﹣x|,然后根據(jù)三角形面積公式列出方程,解方程即可;
(3)解析式聯(lián)立求得B點(diǎn)的坐標(biāo),即可根據(jù)圖象求得不等式﹣x+3<的解集.
解:(1)把點(diǎn)A(1,a)代入y=﹣x+3,得a=2,
∴A(1,2)
把A(1,2)代入反比例函數(shù)y=,
∴k=1×2=2;
∴反比例函數(shù)的表達(dá)式為y=
(2)∵一次函數(shù)y=﹣x+3的圖象與x軸交于點(diǎn)C,
∴C(3,0),
設(shè)P(x,0),
∴PC=|3﹣x|,
∴S△APC=|3﹣x|×2=5,
∴x=﹣2或x=8,
∴P的坐標(biāo)為(﹣2,0)或(8,0);
(3)解,
解得:或,
∴B(2,1),
由圖象可知:不等式﹣x+3<的解集是:0<x<1或x>2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是把一個拋物線形橋拱,量得兩個數(shù)據(jù),畫在紙上的情形.小明說只要建立適當(dāng)?shù)淖鴺?biāo)系,就能求出此拋物線的表達(dá)式.你認(rèn)為他的說法正確嗎?如果不正確,請說明理由;如果正確,請你幫小明求出該拋物線的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為4正方形ABCD中,以AB為腰向正方形內(nèi)部作等腰△ABE,點(diǎn)G在CD上,且CG=3DG.連接BG并延長,與AE交于點(diǎn)F,與AD延長線交于點(diǎn)H.連接DE交BH于點(diǎn)K.若AE2=BFBH,則S△CDE=__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程(a+1)x2+2bx+(a+1)=0有兩個相等的實(shí)數(shù)根,下列判斷正確的是( )
A. 1一定不是關(guān)于x的方程x2+bx+a=0的根
B. 0一定不是關(guān)于x的方程x2+bx+a=0的根
C. 1和﹣1都是關(guān)于x的方程x2+bx+a=0的根
D. 1和﹣1不都是關(guān)于x的方程x2+bx+a=0的根
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場將進(jìn)貨價為30元的臺燈以40元的價格售出,平均每月能售出600個,經(jīng)調(diào)查表明,這種臺燈的售價每上漲1元,其銷量就減少10個,市場規(guī)定此臺燈售價不得超過60元,為了實(shí)現(xiàn)銷售這種臺燈平均每月10000元的銷售利潤,售價應(yīng)定為多少元?這時售出臺燈多少個?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的是某地區(qū)今年4月份的囗平均氣溫的頻數(shù)分布直方圖(直方圖中每一組數(shù)都包括前一個邊界值,不包括后一個邊界值),則下列結(jié)論中錯誤的是( )
A.該地區(qū)4月份的口平均氣溫在18℃以上(含18℃)的共有10天
B.該直方圖的組距是4℃
C.該地區(qū)4月份的口平均氣溫的最大值至少是22℃
D.該直方圖中口平均氣溫為6~10℃的這一組數(shù)的頻數(shù)為3,頻率為0.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A(2,3),拋物線G:y=x2-2x+c(c為常數(shù))的頂點(diǎn)坐標(biāo)為M,其對稱軸與x軸相交于點(diǎn)N.
(1)若拋物線G經(jīng)過點(diǎn)A,求出其解析式,并寫出點(diǎn)M的坐標(biāo).
(2)若點(diǎn)B(x1,y1)和點(diǎn)C(x1+3,y2)在拋物線G上,試比較y1,y2的大。
(3)連接OM,若45°≤∠MON≤60°,請直接寫出c的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對任意一個三位數(shù),如果滿足各數(shù)位上的數(shù)字互不相同,且都不為零,那么稱這個數(shù)為“相異數(shù)”.將一個“相異數(shù)”任意兩個數(shù)位上的數(shù)字對調(diào)后可以得到三個不同的新三位數(shù),把這三個新三位數(shù)的和與111的商記為.例如,對調(diào)百位與十位上的數(shù)字得到213,對調(diào)百位與個位上的數(shù)字得到321,對調(diào)十位與個位上的數(shù)字得到132,這三個新三位數(shù)的和,,所以.
(1)計算:,;
(2)小明在計算時發(fā)現(xiàn)幾個結(jié)果都為正整數(shù),小明猜想所有的均為正整數(shù),你覺得這個猜想正確嗎?請判斷并說明理由;
(3)若,都是“相異數(shù)”,其中,(,,、都是正整數(shù)),當(dāng)時,求的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了解學(xué)生“第二課堂“活動的選修情況,對報名參加A.跆拳道,B.聲樂,C.足球,D.古典舞這四項(xiàng)選修活動的學(xué)生(每人必選且只能選修一項(xiàng))進(jìn)行抽樣調(diào)查.并根據(jù)收集的數(shù)據(jù)繪制了圖①和圖②兩幅不完整的統(tǒng)計圖.
根據(jù)圖中提供的信息,解答下列問題:
(1)本次調(diào)查的學(xué)生共有 人;在扇形統(tǒng)計圖中,B所對應(yīng)的扇形的圓心角的度數(shù)是 ;
(2)將條形統(tǒng)計圖補(bǔ)充完整;
(3)在被調(diào)查選修古典舞的學(xué)生中有4名團(tuán)員,其中有1名男生和3名女生,學(xué)校想從這4人中任選2人進(jìn)行古典舞表演.請用列表或畫樹狀圖的方法求被選中的2人恰好是1男1女的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com