【題目】某公司開發(fā)出一款新包裝的牛奶,牛奶的成本價(jià)為6元/盒,這種新包裝的牛奶在正式投放市場前通過代銷點(diǎn)進(jìn)行了為期一個(gè)月(30天)的試營銷,售價(jià)為8元/盒.前幾天的銷量每況愈下,工作人員對(duì)銷售情況進(jìn)行了跟蹤記錄,并將記錄情況繪成圖象,圖中的線段表示前12天日銷售量y(盒)與銷售時(shí)間x(天)之間的函數(shù)關(guān)系,于是從第13天起采用打折銷售(不低于成本價(jià)),時(shí)間每增加1天,日銷售量就增加10盒.
(1)打折銷售后,第17天的日銷售量為________盒;
(2)求y與x之間的函數(shù)關(guān)系式,并寫出x的取值范圍;
(3)已知日銷售利潤不低于560元的天數(shù)共有6天,設(shè)打折銷售的折扣為a折,試確定a的最小值.
【答案】(1)240;(2)y=;(3)9.5
【解析】
(1)由圖像可得第12天的日銷售量為190盒,因?yàn)閺牡?/span>13天起采用打折銷售(不低于成本價(jià)),時(shí)間每增加1天,日銷售量就增加10盒,故日銷售量比第12天增加50盒,為240盒;
(2)當(dāng)1≤x≤12時(shí),令y=kx+b,代入x=1時(shí),y=300;x=12,y=190即可求解;當(dāng)12<x≤30時(shí),則y=190+10(x-12),化簡即可;
(3)先計(jì)算出當(dāng)1≤x≤12時(shí),有三天日銷售利潤不低于560元,確定當(dāng)12<x≤30時(shí),有三天日銷售利潤不低于560元,由函數(shù)的增減性即可求解.
(1)由圖像可得第12天的日銷售量為190盒,因?yàn)閺牡?/span>13天起采用打折銷售(不低于成本價(jià)),時(shí)間每增加1天,日銷售量就增加10盒,故日銷售量比第12天增加50盒,為240盒;
故答案為:240
(2)當(dāng)1≤x≤12時(shí),
令y=kx+b.
由圖知:當(dāng)x=1時(shí),y=300;x=12,y=190.
∴
∴
∴y=—10x+310(1≤x≤12).
當(dāng)12<x≤30時(shí),y=190+10(x-12).
∴y=10x+70 (12<x≤30).
∴y=
(3)當(dāng)1≤x≤12時(shí),
由(8-6)y≥560得, 2(-10x+310)≥560,
解得: x≤3.
∴1≤x≤3,x=1,2,3,共三天.
∵日銷售利潤不低于560元的天數(shù)共有6天,
∴當(dāng)12<x≤30時(shí),有三天日銷售利潤不低于560元,
由y=10x+70 (28<x≤30)得y隨x的增大而增大,
∵x為整數(shù),∴x=28,29,30時(shí),日銷售利潤不低于560元,且當(dāng)x=28時(shí),利潤最低.
由題意得,(8×0.1a-6)(10×28+70)≥560.
∴a≥9.5,
∴a的最小值為9.5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠B=30°,點(diǎn)D、E分別在邊AC、AB上,AD=14,點(diǎn)P是邊BC上一動(dòng)點(diǎn),當(dāng)PD+PE的值最小時(shí),AE=15,則BE為( )
A.30B.29C.28D.27
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC為等腰直角三角形,AB=AC,△ADE為等腰直角三角形,AD=AE,點(diǎn)D在直線BC上,連接CE.
(1)判斷:①CE、CD、BC之間的數(shù)量關(guān)系;②CE與BC所在直線之間的位置關(guān)系,并說明理由;
(2)若D在CB延長線上,(1)中的結(jié)論是否成立?若成立,請(qǐng)直接寫出結(jié)論,若不成立,請(qǐng)說明理由;
(3)若D在BC延長線上,(1)中的結(jié)論是否成立?若成立,請(qǐng)直接寫出結(jié)論,若不成立,請(qǐng)寫出你發(fā)現(xiàn)的結(jié)論,并計(jì)算:當(dāng)CE=10cm,CD=2cm時(shí),BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)(x>0)的圖象與直線相交于點(diǎn)A,與直線y=kx(k≠0)相交于點(diǎn)B,若△OAB的面積為18,則k的值為_______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于一元二次方程ax2+bx+c=0(a≠0),下列說法:
①若b=2,則方程ax2+bx+c=0一定有兩個(gè)相等的實(shí)數(shù)根;
②若方程ax2+bx+c=0有兩個(gè)不等的實(shí)數(shù)根,則方程x2﹣bx+ac=0也一定有兩個(gè)不等的實(shí)數(shù)根;
③若c是方程ax2+bx+c=0的一個(gè)根,則一定有ac+b+1=0成立;
④若x0是一元二次方程ax2+bx+c=0的根,則b2﹣4ac=(2ax0+b)2,其中正確的( )
A.只有①②③B.只有①②④C.①②③④D.只有③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,點(diǎn)A、B的坐標(biāo)分別為(1,4)和(3,0),點(diǎn)C是y軸上的一個(gè)動(dòng)點(diǎn),且A、B、C三點(diǎn)不在同一條直線上,當(dāng)△ABC的周長最小時(shí),點(diǎn)C的坐標(biāo)是
A.(0,0)B.(0,1)C.(0,2)D.(0,3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知是等腰三角形,,,點(diǎn)在邊上,點(diǎn)在邊上(點(diǎn)不與所在線段端點(diǎn)重合),,連接,射線,延長交射線于點(diǎn),點(diǎn)在直線上,且.
(1)如圖,當(dāng)時(shí),請(qǐng)直接寫出與的關(guān)系:_____;與的位置關(guān)系:_____.
(2)當(dāng),其他條件不變時(shí),的度數(shù)是多少?(用含的代數(shù)式表示)
(3)若是等邊三角形,,是邊上的三等分點(diǎn),直線與直線交于點(diǎn),求線段的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸上的點(diǎn)A、B、C、D、E表示連續(xù)的五個(gè)整數(shù),對(duì)應(yīng)的數(shù)分別為a、b、c、d、e。
(1)若a+e=0,直接寫出代數(shù)式b+c+d的值為_____;
(2)若a+b=7,先化簡,再求值:;
(3)若a+b+c+d+e=5,數(shù)軸上的點(diǎn)M表示的實(shí)數(shù)為m,且滿足MA+ME>12,則m的范圍是____。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線y=x+b與雙曲線y=的一個(gè)交點(diǎn)為A(2,4),與y軸交于點(diǎn)B.
(1)求m的值和點(diǎn)B的坐標(biāo);
(2)點(diǎn)P在雙曲線y=上,△OBP的面積為8,直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com