【題目】小明跳起投籃,球出手時(shí)離地面m,球出手后在空中沿拋物線路徑運(yùn)動(dòng),并在距出手點(diǎn)水平距離4m處達(dá)到最高度4m.已知籃筐中心距地面3m,與球出手時(shí)的水平距離為8m,建立如圖所示的平面直角坐標(biāo)系.

(1)求此拋物線對(duì)應(yīng)的函數(shù)關(guān)系式;

(2)此次投籃,球能否直接命中籃筐中心?若能,請(qǐng)說明理由;若不能,在出手的角度和力度都不變的情況下,球出手時(shí)距離地面多少米可使球直接命中籃筐中心?

【答案】1y=;(2)不能正中籃筐中心;3.

【解析】試題分析:(1)根據(jù)頂點(diǎn)坐標(biāo)(4,4),設(shè)拋物線的解析式為:y=,由球出手時(shí)離地面m,可知拋物線與y軸交點(diǎn)為(0),代入可求出a的值,寫出解析式;

2)先計(jì)算當(dāng)x=8時(shí),y的值是否等于3,把x=8代入得:y=,所以要想球經(jīng)過(8,3),則拋物線得向上平移3﹣=個(gè)單位,即球出手時(shí)距離地面3米可使球直接命中籃筐中心.

試題解析:(1)設(shè)拋物線為y=,

將(0)代入,得=

解得a=,

所求的解析式為y=

2)令x=8,得y==≠3

拋物線不過點(diǎn)(8,3),

故不能正中籃筐中心;

拋物線過點(diǎn)(8,),

要使拋物線過點(diǎn)(8,3),可將其向上平移個(gè)單位長(zhǎng)度,故小明需向上多跳m再投籃(即球出手時(shí)距離地面3米)方可使球正中籃筐中心.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】化簡(jiǎn):a+a=( 。
A.2
B.a2
C.2a2
D.2a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=ax2+c與x軸交于A、B兩點(diǎn)(A在B的左邊),與y軸交于點(diǎn)C,拋物線上有一動(dòng)點(diǎn)P

(1)若A(﹣2,0),C(0,﹣4)

①求拋物線的解析式;

②在①的情況下,若點(diǎn)P在第四象限運(yùn)動(dòng),點(diǎn)D(0,﹣2),以BD、BP為鄰邊作平行四邊形BDQP,求平行四邊形BDQP面積的取值范圍.

(2)若點(diǎn)P在第一象限運(yùn)動(dòng),且a<0,連接AP、BP分別交y軸于點(diǎn)E、F,則問 是否與a,c有關(guān)?若有關(guān),用a,c表示該比值;若無關(guān),求出該比值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在﹣4,2,﹣1,3這四個(gè)數(shù)中,比﹣2小的數(shù)是( 。
A.-4
B.2
C.-1
D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】彌陽鎮(zhèn)某天早晨的氣溫是18℃,中午上升6℃,半夜又下降5℃,則半夜的氣溫是℃.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的對(duì)角線相交于點(diǎn)O,過點(diǎn)D作DE∥AC,且DE=AC,連接CE、OE,連接AE,交OD于點(diǎn)F,若AB=2,∠ABC=600,則AE的長(zhǎng)為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】高速路上因趕時(shí)間超速而頻頻發(fā)生交通事故,這樣給自己和他人的生命安全帶來直接影響,為了解車速情況,一名執(zhí)法交警在高速路上隨機(jī)測(cè)試了6個(gè)小轎車的車速情況記錄如下:

車序號(hào)

1

2

3

4

5

6

車速(千米/時(shí))

100

95

106

100

120

100

則這6輛車車速的眾數(shù)和中位數(shù)(單位:千米/時(shí))分別是(
A.100,95
B.100,100
C.102,100
D.100,103

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長(zhǎng)為a的等邊△ACB中,E是對(duì)稱軸AD上一個(gè)動(dòng)點(diǎn),連EC,將線段EC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)60°得到MC,連DM,則在點(diǎn)E運(yùn)動(dòng)過程中,DM的最小值是_____

【答案】1.5

【解析】試題分析:取AC的中點(diǎn)G,連接EG,根據(jù)等邊三角形的性質(zhì)可得CD=CG,再求出∠DCF=∠GCE,根據(jù)旋轉(zhuǎn)的性質(zhì)可得CE=CF,然后利用邊角邊證明△DCF△GCE全等,再根據(jù)全等三角形對(duì)應(yīng)邊相等可得DF=EG,然后根據(jù)垂線段最短可得EG⊥AD時(shí)最短,再根據(jù)∠CAD=30°求解即可.

解:如圖,取AC的中點(diǎn)G,連接EG

旋轉(zhuǎn)角為60°,

∴∠ECD+∠DCF=60°,

∵∠ECD+∠GCE=∠ACB=60°,

∴∠DCF=∠GCE

∵AD是等邊△ABC的對(duì)稱軸,

∴CD=BC,

∴CD=CG

∵CE旋轉(zhuǎn)到CF,

∴CE=CF,

△DCF△GCE中,

∴△DCF≌△GCESAS),

∴DF=EG,

根據(jù)垂線段最短,EG⊥AD時(shí),EG最短,即DF最短,

此時(shí)∵∠CAD=×60°=30°AG=AC=×6=3,

∴EG=AG=×3=1.5,

∴DF=1.5

故答案為:1.5

考點(diǎn):旋轉(zhuǎn)的性質(zhì);等邊三角形的性質(zhì).

型】填空
結(jié)束】
19

【題目】分解因式:

(1) (2)9(m+n)216(mn)2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1,已知:在ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點(diǎn)A,BD⊥直線m,CE⊥直線m,垂足分別為點(diǎn)D、E.證明:DE=BD+CE.

(2)如圖2,將(1)中的條件改為:在ABC中,AB=AC,D、A、E三點(diǎn)都在直線m上,并且∠BDA=AEC=BAC=α,其中α為任意銳角或鈍角.請(qǐng)問結(jié)論DE=BD+CE是否成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說明理由.

(3)拓展與應(yīng)用:如圖3,D、ED、A、E三點(diǎn)所在直線m上的兩動(dòng)點(diǎn)(D、A、E三點(diǎn)

互不重合),點(diǎn)F為∠BAC平分線上的一點(diǎn),且ABFACF均為等邊三角形,連接BD、CE,若∠BDA=AEC=BAC,試判斷DEF的形狀.

查看答案和解析>>

同步練習(xí)冊(cè)答案