【題目】(1)如圖1,已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點A,BD⊥直線m,CE⊥直線m,垂足分別為點D、E.證明:DE=BD+CE.
(2)如圖2,將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點都在直線m上,并且∠BDA=∠AEC=∠BAC=α,其中α為任意銳角或鈍角.請問結論DE=BD+CE是否成立?若成立,請給出證明;若不成立,請說明理由.
(3)拓展與應用:如圖3,D、E是D、A、E三點所在直線m上的兩動點(D、A、E三點
互不重合),點F為∠BAC平分線上的一點,且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀.
【答案】(1)證明見解析;(2)成立,證明見解析;(3)△DEF是等邊三角形.證明見解析.
【解析】試題分析:(1)利用已知得出∠CAE=∠ABD,進而利用AAS得出則△ABD≌△CAE,即可得出DE=BD+CE;
(2)根據(jù)∠BDA=∠AEC=∠BAC=α,得出∠CAE=∠ABD,在△ADB和△CEA中,根據(jù)AAS證出△ADB≌△CEA,從而得出AE=BD,AD=CE,即可證出DE=BD+CE;
(3)與前面的結論得到△ADB≌△CEA,則BD=AE,∠DBA=∠CAE,根據(jù)等邊三角形的性質得∠ABF=∠CAF=60°,則∠DBA+∠ABF=∠CAE+∠CAF,則∠DBF=∠FAE,
利用“SAS”可判斷△DBF≌△EAF,所以DF=EF,∠BFD=∠AFE,于是∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,根據(jù)等邊三角形的判定方法可得到△DEF為等邊三角形.則
DF=EF.
解:(1)DE=BD+CE.理由如下:
如圖1,∵BD⊥l,CE⊥l,
∴∠BDA=∠AEC=90°
又∵∠BAC=90°,
∴∠BAD+∠CAE=90°,∠BAD+∠ABD=90°,
∴∠CAE=∠ABD
在△ABD和△CAE中,
,
∴△ABD≌△CAE(AAS)
∴BD=AE,AD=CE,
∵DE=AD+AE,
∴DE=CE+BD;
(2)如圖2,∵∠BDA=∠AEC=∠BAC=α,
∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,
∴∠CAE=∠ABD,
在△ADB和△CEA中,
,
∴△ADB≌△CEA(AAS),
∴AE=BD,AD=CE,
∴BD+CE=AE+AD=DE;
(3)DF=EF.理由如下:
由(2)知,△ADB≌△CAE,
BD=EA,∠DBA=∠CAE,
∵△ABF和△ACF均為等邊三角形,
∴∠ABF=∠CAF=60°,
∴∠DBA+∠ABF=∠CAE+∠CAF,
∴∠DBF=∠FAE,
∵BF=AF
在△DBF和△EAF中,
,
∴△DBF≌△EAF(SAS),
∴DF=EF,∠BFD=∠AFE,
∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,
∴△DEF為等邊三角形.
∴DF=EF.
科目:初中數(shù)學 來源: 題型:
【題目】己知:如圖,E、F分別是ABCD的AD、BC邊上的點,且AE=CF.
(1)求證:△ABE≌△CDF;
(2)若M、N分別是BE、DF的中點,連接MF、EN,試判斷四邊形MFNE是怎樣的四邊形,并證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,長方形ABOD的頂點A是函數(shù)y=-x-(k+1)的圖象與函數(shù)y=在第二象限的圖象的交點,B,D兩點在坐標軸上,且長方形ABOD的面積為3.
(1)求兩函數(shù)的表達式;
(2)求兩函數(shù)圖象的交點A,C的坐標;
(3)若點P是y軸上一動點,且S△APC=5,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知A、B、C三點在同一條直線上,如果線段AB=3cm,BC=1cm,那么A、C兩點間的距離為( 。
A. 4cm B. 2cm C. 4cm或2cm D. 不能確定
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在正方形ABCD中,P是對角線BD上的一點,點E在AD的延長線上,且PA=PE,PE交CD于F.
(1)求∠CPE的度數(shù);
(2)如圖2,把正方形ABCD改為菱形ABCD,其他條件不變,當∠ABC=120°時,連接CE,試探究線段AP與線段CE的數(shù)量關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】蒼南縣自來水費采取階梯式計價,第一階梯為月總用水量不超過34m3用戶,自來水價格為2.40元/m3,第二階梯為月總用水量超過34m3用戶,前34m3水價為2.40元/m3,超出部分水價為3.35元/m3.小敏家上月總用水量為50m3,求小敏家上月應交多少水費?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,平行四邊形OABC的頂點A在x軸上,頂點B的坐標為(4,6),直線y=kx+3k將平行四邊形OABC分割成面積相等的兩部分,則k的值是( ).
A. B. C.- D.﹣
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com