【題目】(背景介紹)勾股定理是幾何學(xué)中的明珠,充滿著魅力.千百年來,人們對它的證明趨之若騖,其中有著名的數(shù)學(xué)家,也有業(yè)余數(shù)學(xué)愛好者.向常春在1994年構(gòu)造發(fā)現(xiàn)了一個(gè)新的證法.
(小試牛刀)把兩個(gè)全等的直角三角形如圖1放置,其三邊長分別為a、b、c.顯然,∠DAB=∠B=90°,AC⊥DE.請用a、b、c分別表示出梯形ABCD、四邊形AECD、△EBC的面積,再探究這三個(gè)圖形面積之間的關(guān)系,可得到勾股定理:
S梯形ABCD= ,
S△EBC= ,
S四邊形AECD= ,
則它們滿足的關(guān)系式為 ,經(jīng)化簡,可得到勾股定理.
(知識運(yùn)用)(1)如圖2,鐵路上A、B兩點(diǎn)(看作直線上的兩點(diǎn))相距40千米,C、D為兩個(gè)村莊(看作兩個(gè)點(diǎn)),AD⊥AB,BC⊥AB,垂足分別為A、B,AD=25千米,BC=16千米,則兩個(gè)村莊的距離為 千米(直接填空);
(2)在(1)的背景下,若AB=40千米,AD=24千米,BC=16千米,要在AB上建造一個(gè)供應(yīng)站P,使得PC=PD,請用尺規(guī)作圖在圖2中作出P點(diǎn)的位置并求出AP的距離.
(知識遷移)借助上面的思考過程與幾何模型,求代數(shù)式最小值(0<x<16)
【答案】【小試牛刀】,,,a(a+b)=b(a-b)+c2.
【知識運(yùn)用】(1)41;(2)作圖見解析;
【知識遷移】20.
【解析】
【小試牛刀】
根據(jù)三角形的面積和梯形的面積就可表示出.
【知識運(yùn)用】
(1)連接CD,作CE⊥AD于點(diǎn)E,根據(jù)AD⊥AB,BC⊥AB得到BC=AE,CE=AB,從而得到DE=AD-AE=24-16=8千米,利用勾股定理求得CD兩地之間的距離.
(2)連接CD,作CD的垂直平分線角AB于P,P即為所求;設(shè)AP=x千米,則BP=(40-x)千米,分別在Rt△APD和Rt△BPC中,利用勾股定理表示出CP和PD,然后通過PC=PD建立方程,解方程即可.
【知識遷移】
根據(jù)軸對稱-最短路線的求法即可求出.
[小試牛刀]
S梯形ABCD=
S△EBC=
S四邊形AECD=.
根據(jù)S梯形ABCD= S△EBC + S四邊形AECD,得a(a+b)=b(a-b)+c2.
故答案為:,,,a(a+b)=b(a-b)+c2.
[知識運(yùn)用](1)如圖2①,連接CD,作CE⊥AD于點(diǎn)E,
∵AD⊥AB,BC⊥AB,
∴BC=AE,CE=AB,
∴DE=AD-AE=25-16=9千米,
∴CD==41千米,
∴兩個(gè)村莊相距41千米.
故答案為41.
(2)如圖2②所示:
設(shè)AP=x千米,則BP=(40-x)千米,
在Rt△ADP中,DP2=AP2+AD2=x2+242,
在Rt△BPC中,CP2=BP2+BC2=(40-x)2+162,
∵PC=PD,
∴x2+242=(40-x)2+162,
解得x=16,
即AP=16千米.
[知識遷移]:如圖3,
代數(shù)式的最小值為:=20.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在山頂上有一座電視塔,在塔頂B處,測得地面上一點(diǎn)A的俯角α=60°,在塔底C處測得的俯角β=45°,已知BC=60m,求山高CD(精確到1m, ≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】作圖題:(不寫作法,但必須保留作圖痕跡)
如圖:某地有兩所大學(xué)和兩條相交叉的公路,(點(diǎn)M,N表示大學(xué),AO,BO表示公路).現(xiàn)計(jì)劃修建一座物資倉庫,希望倉庫到兩所大學(xué)的距離相等,到兩條公路的距離也相等.你能確定倉庫P應(yīng)該建在什么位置嗎?在所給的圖形中畫出你的設(shè)計(jì)方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,AB為半圓O的直徑,C為圓上一點(diǎn),AD平分∠BAC交半圓于點(diǎn)D,過點(diǎn)D作DE⊥AC,DE交AC的延長線于點(diǎn)E.
(1)求證:DE是⊙O的切線;
(2)若⊙O的半徑為2,DE= ,求線段AC的長
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,用四個(gè)完全一樣的長、寬分別為x、y的長方形紙片圍成一個(gè)大正方形ABCD,中間是空的小正方形EFGH.若AB=a,EF=b,判斷以下關(guān)系式:① x + y=a;② x-y=b;③ a2-b2=2xy;④ x2-y2=ab;⑤ x2 + y2=,其中正確的有__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程解應(yīng)用題:
某玩具廠生產(chǎn)一種玩具,按照控制固定成本降價(jià)促銷的原則,使生產(chǎn)的玩具能夠及時(shí)售出,據(jù)市場調(diào)查:每個(gè)玩具按元銷售時(shí),每天可銷售個(gè);若銷售單價(jià)每降低元,每天可多售出個(gè).已知每個(gè)玩具的固定成本為元,問這種玩具的銷售單價(jià)為多少元時(shí),廠家每天可獲利潤元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ACB中,∠C=90°,AC=30cm,BC=25cm,動(dòng)點(diǎn)P從點(diǎn)C出發(fā),沿CA方向運(yùn)動(dòng),速度是2cm/s,動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),沿BC方向運(yùn)動(dòng),速度是1cm/s.
(1)幾秒后P、Q兩點(diǎn)相距25cm?
(2)幾秒后△PCQ與△ABC相似?
(3)設(shè)△CPQ的面積為S1 , △ABC的面積為S2 , 在運(yùn)動(dòng)過程中是否存在某一時(shí)刻t,使得S1:S2=2:5?若存在,求出t的值;若不存在,則說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)C在線段AB上,點(diǎn)M、N分別是AC、BC的中點(diǎn).
若,求線段MN的長;
若C為線段AB上任一點(diǎn),滿足,其它條件不變,你能猜想MN的長度嗎?并說明理由,你能用一句簡潔的話描述你發(fā)現(xiàn)的結(jié)論嗎?
若C在線段AB的延長線上,且滿足cm,M、N分別為AC、BC的中點(diǎn),你能猜想MN的長度嗎?請畫出圖形,寫出你的結(jié)論,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將矩形紙片ABCD按如圖所示的方式折疊,恰好得到菱形AECF.若AB=3,則菱形AECF的面積為( )
A.1
B.
C.
D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com