A. | (x+$\frac{16}{3}$)2=1+($\frac{16}{3}$)2 | B. | (x+$\frac{4}{3}$)2=1+($\frac{4}{3}$)2 | C. | (x-$\frac{8}{3}$)2=1+($\frac{1}{3}$)2 | D. | (x-$\frac{4}{3}$)2=1-($\frac{4}{3}$)2 |
分析 方程常數(shù)項(xiàng)移到右邊,二次項(xiàng)系數(shù)化為1,兩邊加上一次項(xiàng)系數(shù)一半的平方,配方得到結(jié)果,即可作出判斷.
解答 解:∵3x2+8x-3=0,
∴3x2+8x=3,
∴x2+$\frac{8}{3}$x=1,
∴x2+$\frac{8}{3}$x+$\frac{16}{9}$=1+$\frac{16}{9}$,
∴(x+$\frac{4}{3}$)2=$\frac{25}{9}$,
故選:B.
點(diǎn)評 本題考查了配方法解一元二次方程.配方法的一般步驟:
(1)把常數(shù)項(xiàng)移到等號的右邊;
(2)把二次項(xiàng)的系數(shù)化為1;
(3)等式兩邊同時加上一次項(xiàng)系數(shù)一半的平方.
選擇用配方法解一元二次方程時,最好使方程的二次項(xiàng)的系數(shù)為1,一次項(xiàng)的系數(shù)是2的倍數(shù).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | (x3)2=x5 | B. | 6x3÷(-3x2)=2x | C. | (x+y)(y-x)=y2-x2 | D. | (-x-y)2=x2-2xy+y2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | -3x2+2x-4 | B. | -3x2-2x+4 | C. | -3x2+2x+4 | D. | 3x2-2x+4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{x-2}+\frac{x}{2-x}=0$ | B. | $\frac{x-2}{2}+\frac{2-x}{x}=0$ | C. | $\sqrt{x-6}=2$ | D. | $\sqrt{x-2}•\sqrt{x-3}=0$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | x2+$\frac{1}{{x}^{2}}$=3 | B. | x2+x=y | C. | (x-4)(x+2)=3 | D. | 3x-2y=0 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com