【題目】某中學(xué)為了解學(xué)生對(duì)新聞、體育、娛樂(lè)、動(dòng)畫四類電視節(jié)目的喜愛(ài)情況,進(jìn)行了統(tǒng)計(jì)調(diào)查隨機(jī)調(diào)查了某班所有同學(xué)最喜歡的節(jié)目每名學(xué)生必選且只能選擇四類節(jié)目中的一類并將調(diào)查結(jié)果繪成如下不完整的統(tǒng)計(jì)圖根據(jù)兩圖提供的信息,回答下列問(wèn)題:

最喜歡娛樂(lè)類節(jié)目的有______人,圖中______;

請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

根據(jù)抽樣調(diào)查結(jié)果,若該校有1800名學(xué)生,請(qǐng)你估計(jì)該校有多少名學(xué)生最喜歡娛樂(lè)類節(jié)目;

在全班同學(xué)中,有甲、乙、丙、丁等同學(xué)最喜歡體育類節(jié)目,班主任打算從甲、乙、丙、丁4名同學(xué)中選取2人參加學(xué)校組織的體育知識(shí)競(jìng)賽,請(qǐng)用列表法或樹狀圖求同時(shí)選中甲、乙兩同學(xué)的概率.

【答案】(1)20、18;(2)詳見(jiàn)解析;(3)720;(4)

【解析】

(1)先根據(jù)新聞類人數(shù)及其所占百分比求得總?cè)藬?shù),再用總?cè)藬?shù)減去其他三個(gè)類型人數(shù)即可求得娛樂(lè)類人數(shù),用動(dòng)畫類人數(shù)除以總?cè)藬?shù)可得x的值;

(2)根據(jù)(1)中所求結(jié)果即可補(bǔ)全條形圖;

(3)用總?cè)藬?shù)乘以樣本中娛樂(lè)類節(jié)目人數(shù)所占比例即可得;

(4)根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與恰好同時(shí)選中甲、乙兩位同學(xué)的情況,然后利用概率公式求解即可求得答案.

被調(diào)查的總?cè)藬?shù)為人,

最喜歡娛樂(lè)類節(jié)目的有,,即,

故答案為:20、18;

補(bǔ)全條形圖如下:

估計(jì)該校最喜歡娛樂(lè)類節(jié)目的學(xué)生有人;

畫樹狀圖得:

共有12種等可能的結(jié)果,恰好同時(shí)選中甲、乙兩位同學(xué)的有2種情況,

恰好同時(shí)選中甲、乙兩位同學(xué)的概率為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(閱讀)如圖1,四邊形OABC中,OA=a,OC=3,BC=2,

∠AOC=∠BCO=90°,經(jīng)過(guò)點(diǎn)O的直線l將四邊形分成兩部分,直線lOC所成的角設(shè)為θ,將四邊形OABC的直角∠OCB沿直線l折疊,點(diǎn)C落在點(diǎn)D處,我們把這個(gè)操作過(guò)程記為FZ[θ,a].

(理解)

若點(diǎn)D與點(diǎn)A重合,則這個(gè)操作過(guò)程為FZ[45°,3];

(嘗試)

(1)若點(diǎn)D恰為AB的中點(diǎn)(如圖2),求θ;

(2)經(jīng)過(guò)FZ[45°,a]操作,點(diǎn)B落在點(diǎn)E處,若點(diǎn)E在四邊形OABC的邊AB上,求出a的值;若點(diǎn)E落在四邊形OABC的外部,直接寫出a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在△ABC中,AB=AC,BC=12厘米,點(diǎn)D為AB上一點(diǎn)且BD=8厘米,點(diǎn)P在線段BC上以2厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t,同時(shí),點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng).

(1)用含t的式子表示PC的長(zhǎng)為_______________;

(2)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)p的運(yùn)動(dòng)速度相等,當(dāng)t=2時(shí),三角形BPD與三角形CQP是否全等,請(qǐng)說(shuō)明理由;

(3)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,請(qǐng)求出點(diǎn)Q的運(yùn)動(dòng)速度是多少時(shí),能夠使三角形BPD與三角形CQP全等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】取一副三角板按如圖所示拼接,固定三角板ADC,將三角板ABC繞點(diǎn)A順時(shí)針?lè)较蛐D(zhuǎn),旋轉(zhuǎn)角度為α(0°<α≤45°),得到△ABC′.

①當(dāng)α為多少度時(shí),ABDC?

②當(dāng)旋轉(zhuǎn)到圖③所示位置時(shí),α為多少度?

③連接BD,當(dāng)0°<α≤45°時(shí),探求∠DBC′+CAC′+BDC值的大小變化情況,并給出你的證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)進(jìn)行有獎(jiǎng)促銷活動(dòng),規(guī)定顧客購(gòu)物達(dá)到一定金額就可以獲得一次轉(zhuǎn)動(dòng)轉(zhuǎn)盤的機(jī)會(huì)(如圖),當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí)指針落在哪一區(qū)域就可獲得相應(yīng)的獎(jiǎng)品(若指針落在兩個(gè)區(qū)域的交界處,則重新轉(zhuǎn)動(dòng)轉(zhuǎn)盤).

轉(zhuǎn)動(dòng)轉(zhuǎn)盤的次數(shù)n

100

150

200

500

800

1000

落在“10元兌換券的次數(shù)m

68

111

136

345

564

701

落在“10元兌換券的頻率

0.68

a

0.68

0.69

b

0.701

(1)a的值為   ,b的值為   ;

(2)假如你去轉(zhuǎn)動(dòng)該轉(zhuǎn)盤一次,獲得“10元兌換券的概率約是   ;(結(jié)果精確到0.01)

(3)根據(jù)(2)的結(jié)果,在該轉(zhuǎn)盤中表示“20元兌換券區(qū)域的扇形的圓心角大約是多少度?(結(jié)果精確到1°)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】新定義運(yùn)算“◎”,對(duì)于任意有理數(shù)a、b,都有a◎b=a2﹣ab+b﹣1,例如:3◎5=32﹣3×5+5﹣1=﹣2,若任意投擲一枚印有數(shù)字1~6的質(zhì)地均勻的骰子,將朝上的點(diǎn)數(shù)作為x的值,則代數(shù)式(x﹣3)◎(3+x)的值為非負(fù)數(shù)的概率是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ΔABC中,∠C=90°,∠B=30°,以點(diǎn)A為圓心,任意長(zhǎng)為半徑畫弧分別交AB、AC于點(diǎn)MN.再分別以點(diǎn)M、N為圓心,大于MN的長(zhǎng)為半徑畫弧,兩弧交于P點(diǎn),連接AP并延長(zhǎng)交BC于點(diǎn)D,則下列說(shuō)法中:①AD是∠BAC的平分線;②∠ADC=60°;③點(diǎn)DAB中點(diǎn)的連線垂直平分AB;④SΔDAC:SΔABC=1:3;正確的是( )

A.①③B.②④C.①②③D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:在△ABC中,點(diǎn)D,E,F(xiàn)分別是邊AB,BC,CA上的動(dòng)點(diǎn),若△DEF∽△ABC(點(diǎn)D、E、F的對(duì)應(yīng)點(diǎn)分別為點(diǎn)A、B、C),則稱△DEF△ABC的子三角形,如圖.

(1)已知:如圖1,△ABC是等邊三角形,點(diǎn)D,E,F(xiàn)分別是邊AB,BC,CA上動(dòng)點(diǎn),且AD=BE=CF.

求證:△DEF△ABC的子三角形.

(2)已知:如圖2,△DEF△ABC的子三角形,且AB=AC,∠A=90°,若BE=,求CFAD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】校園安全受到全社會(huì)的廣泛關(guān)注,東營(yíng)市某中學(xué)對(duì)部分學(xué)生就校園安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問(wèn)題:

1接受問(wèn)卷調(diào)查的學(xué)生共有_______人,扇形統(tǒng)計(jì)圖中基本了解部分所對(duì)應(yīng)扇形的圓心角為_(kāi)______°;

2請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

3若該中學(xué)共有學(xué)生900人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對(duì)校園安全知識(shí)達(dá)到了解基本了解程度的總?cè)藬?shù);

4若從對(duì)校園安全知識(shí)達(dá)到了解程度的3個(gè)女生和2個(gè)男生中隨機(jī)抽取2人參加校園安全知識(shí)競(jìng)賽,請(qǐng)用樹狀圖或列表法求出恰好抽到1個(gè)男生和1個(gè)女生的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案