【題目】如圖,拋物線交軸于,兩點(diǎn),交軸于點(diǎn),點(diǎn)關(guān)于拋物線的對稱軸的對稱點(diǎn)為,點(diǎn),分別在軸和軸上,則四邊形周長的最小值為__________.
【答案】
【解析】
根據(jù)拋物線解析式求得點(diǎn)D(1,4)、點(diǎn)E(2,3),作點(diǎn)D關(guān)于y軸的對稱點(diǎn)D′(﹣1,4)、作點(diǎn)E關(guān)于x軸的對稱點(diǎn)E′(2,﹣3),從而得到四邊形EDFG的周長=DE+DF+FG+GE=DE+D′F+FG+GE′,當(dāng)點(diǎn)D′、F、G、E′四點(diǎn)共線時,周長最短,據(jù)此根據(jù)勾股定理可得答案.
如圖,
在y=﹣x2+2x+3中,當(dāng)x=0時,y=3,即點(diǎn)C(0,3),
∵y=﹣x2+2x+3=﹣(x-1)2+4,
∴對稱軸為x=1,頂點(diǎn)D(1,4),
則點(diǎn)C關(guān)于對稱軸的對稱點(diǎn)E的坐標(biāo)為(2,3),
作點(diǎn)D關(guān)于y軸的對稱點(diǎn)D′(﹣1,4),作點(diǎn)E關(guān)于x軸的對稱點(diǎn)E′(2,﹣3),
連結(jié)D′、E′,D′E′與x軸的交點(diǎn)G、與y軸的交點(diǎn)F即為使四邊形EDFG的周長最小的點(diǎn),
四邊形EDFG的周長=DE+DF+FG+GE
=DE+D′F+FG+GE′
=DE+D′E′
=
=
∴四邊形EDFG周長的最小值是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)某工廠計劃在規(guī)定時間內(nèi)生產(chǎn)24000個零件,若每天比原計劃多生產(chǎn)30個零件,則在規(guī)定時間內(nèi)可以多生產(chǎn)300個零件.
(1)求原計劃每天生產(chǎn)的零件個數(shù)和規(guī)定的天數(shù).
(2)為了提前完成生產(chǎn)任務(wù),工廠在安排原有工人按原計劃正常生產(chǎn)的同時,引進(jìn)5組機(jī)器人生產(chǎn)流水線共同參與零件生產(chǎn),已知每組機(jī)器人生產(chǎn)流水線每天生產(chǎn)零件的個數(shù)比20個工人原計劃每天生產(chǎn)的零件總數(shù)還多20%,按此測算,恰好提前兩天完成24000個零件的生產(chǎn)任務(wù),求原計劃安排的工人人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一艘船以每小時海里的速度向西南方向航行,在處觀測燈塔在船的南偏西的方向,航行分鐘后到達(dá)處,這時燈塔恰好在船的正西方向.已知距離此燈塔海里以內(nèi)的海區(qū)有暗礁,這艘船繼續(xù)沿西南方向航行是否有觸礁的危險?為什么?(參考數(shù)據(jù):,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象相交于A、B兩點(diǎn),A點(diǎn)坐標(biāo)是(﹣2,1),B點(diǎn)坐標(biāo)(1,n);
(1)求出k,b,m,n的值;
(2)求△AOB的面積;
(3)直接寫出一次函數(shù)的函數(shù)值大于反比例函數(shù)的函數(shù)值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,對稱軸為直線x=2的拋物線經(jīng)過點(diǎn)A(-1,0),C(0,5)兩點(diǎn),與x軸另一交點(diǎn)為B,已知M(0,1),E(a,0),F(a+1,0),點(diǎn)P是第一象限內(nèi)的拋物線上的動點(diǎn).
(1)求此拋物線的解析式;
(2)當(dāng)a=1時,求四邊形MEFP面積的最大值,并求此時點(diǎn)P的坐標(biāo);
(3)若△PCM是以點(diǎn)P為頂點(diǎn)的等腰三角形,求a為何值時,四邊形PMEF周長最小?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,以為直徑的⊙交于點(diǎn),過點(diǎn)作于點(diǎn),且.
()判斷與⊙的位置關(guān)系并說明理由;
()若,,求⊙的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于二次函數(shù)y=2x2﹣mx+m﹣2,以下結(jié)論:①不論m取何值,拋物線總經(jīng)過點(diǎn)(1,0);②拋物線與x軸一定有兩個交點(diǎn);③若m>6,拋物線交x軸于A、B兩點(diǎn),則AB>1;④拋物線的頂點(diǎn)在y=﹣2(x﹣1)2圖象上.上述說法錯誤的序號是_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形AOBC,以O為坐標(biāo)原點(diǎn),OB、OA分別在x軸、y軸上,點(diǎn)A的坐標(biāo)為(0,8),點(diǎn)B的坐標(biāo)為(10,0),點(diǎn)E是BC邊上一點(diǎn),把長方形AOBC沿AE翻折后,C點(diǎn)恰好落在x軸上點(diǎn)F處.
(1)求點(diǎn)E、F的坐標(biāo);
(2)求AF所在直線的函數(shù)關(guān)系式;
(3)在x軸上求一點(diǎn)P,使△PAF成為以AF為腰的等腰三角形,請直接寫出所有符合條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC與△AEF中,AB=AE,BC=EF,∠B=∠E,AB交EF于D.給出下列結(jié)論:①AF=AC;②DF=CF;③∠AFC=∠C;④∠BFD=∠CAF.
其中正確的結(jié)論個數(shù)有. ( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com