在直角坐標(biāo)系中,y=x2+ax+2a與x軸交于A,B兩點,點E(2,0)繞點O順時針旋轉(zhuǎn)90°后的對應(yīng)點C在此拋物線上,點P(4,2).
(1)求拋物線解析式;
(2)如圖1,點F是線段AC上一動點,作矩形FC1B1A1,使C1在CB上,B1,A1在AB上,設(shè)線段A1F的長為a,求矩形FC1B1A1的面積S與a的函數(shù)關(guān)系式,并求S的最大值;
(3)如圖2,在(1)的拋物線上是否存在兩個點M,N,使以O(shè),M,N,P為頂點的四邊形是平行四邊形?若存在,求出點M,N的坐標(biāo);若不存在,請說明理由.
精英家教網(wǎng)
分析:(1)由于點E(2,0)繞點O順時針旋轉(zhuǎn)90°后得到點C,那么C(0,-2),將它的坐標(biāo)代入拋物線的解析式中,即可求出a的值,從而確定該拋物線的解析式.
(2)根據(jù)(1)所得拋物線的解析式,即可求出A、B的坐標(biāo),在△ABC中,易求得AB、OC的長,而△CC1F∽△CBA,根據(jù)得到的比例線段,即可求得FC1的表達式,從而根據(jù)矩形的面積公式求出S、a的函數(shù)關(guān)系式.
(3)此題應(yīng)分作兩種情況考慮:
①以O(shè)P為平行四邊形的邊,那么MN平行且相等于OP,可設(shè)出點M的坐標(biāo),根據(jù)O、P的坐標(biāo)可知M、N的橫坐標(biāo)的差為4,縱坐標(biāo)的差為2,可據(jù)此表示出點N的坐標(biāo),然后代入拋物線的解析式中,即可求得M、N的坐標(biāo);
②以O(shè)P為平行四邊形的對角線,首先求出OP中點(即平行四邊形對角線的交點)的坐標(biāo),設(shè)出點M坐標(biāo)后,仿照①的方法表示出點N的坐標(biāo),再代入拋物線的解析式中求得M、N的坐標(biāo)即可.
解答:解:(1)∵點E(2,0)繞點O順時針旋轉(zhuǎn)90°后對應(yīng)點是點C,
∴C(0,-2);
代入拋物線的解析式中,得:
2a=-2,
即a=-1;
∴該拋物線的解析式為:y=x2-x-2.

(2)易知:A(-1,0),B(2,0),C(0,-2);
則AB=3,OC=2.
∵四邊形A1B1C1F是矩形,則FC1∥AB,
∴△CC1F∽△CBA,
得:
2-a
2
=
FC1
3
,
故FC1=
3
2
(2-a);
∴S=A1F•FC1=a×
3
2
(2-a)=-
3
2
(a2-2a);
即:S=-
3
2
(a-1)2+
3
2

即當(dāng)a=1時,S最大=
3
2


(3)假設(shè)存在符合條件的M、N點,則:
①以O(shè)P為平行四邊形的邊長;
設(shè)M(a,a2-a-2),則N(a-4,a2-a-4);
由于N點在拋物線的圖象上,
(a-4)2-(a-4)-2=a2-a-4,
解得a=
11
4
,
故M(
11
4
,
45
16
),N(-
5
4
13
16
);
②以O(shè)P為平行四邊形對角線:先求出OP中點坐標(biāo)為(2,1),
設(shè)M(a,a2-a-2),則N(4-a,-a2+a+4);
將N點坐標(biāo)代入拋物線解析式,
得:(4-a)2-(4-a)-2=-a2+a+4,
解得a=3或1,
則M,N的坐標(biāo)分別為(3,4),(1,-2)或(1,-2),(3,4);
因此存在符合條件的M、N點,它們的坐標(biāo)為:
M(
11
4
45
16
),N(-
5
4
,
13
16
)或M(-
5
4
,
13
16
),N(
11
4
45
16
)或M(3,4),N(1,-2)或M(1,-2),N(3,4).
點評:此題考查了圖形的旋轉(zhuǎn)變換、二次函數(shù)解析式的確定、圖形面積的求法以及平行四邊形的判定等重要知識點,在(3)題中,由于OP是平行四邊形的邊還是對角線并不確定,因此一定要分類討論,以免漏解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系中有三點A(0,1),B(1,3),C(2,6);已知直線y=ax+b上橫坐標(biāo)為0、1、2的點分別為D、E、F.試求a,b的值使得AD2+BE2+CF2達到最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系中,某三角形三個頂點的橫坐標(biāo)不變,縱坐標(biāo)都增加2個單位,則所得三角形與原三角形相比( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系中,將坐標(biāo)為(5,6),(1,2),(3,2),(3,0),(7,0),(7,2),(9,2),(5,6)的點用線段依此連接起來形成一個圖案.
(1)縱坐標(biāo)保持不變,橫坐標(biāo)分別減去3呢,與原圖形相比,所得圖形有什么變化?
(2)橫坐標(biāo)保持不變,縱坐標(biāo)分別乘以-1,與原圖形相比,所得圖形有什么變化?
(3)橫坐標(biāo)加上2,縱坐標(biāo)減去3呢,與原圖形相比,所得圖形有什么變化?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系中,O為坐標(biāo)原點,△ABO是正三角形,若點B的坐標(biāo)是(-2,0),則點A的坐標(biāo)是
(-1,
3
),(-1,-
3
)
(-1,
3
),(-1,-
3
)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC在直角坐標(biāo)系中,
(1)請寫出△ABC各點的坐標(biāo);
(2)求出S△ABC
(3)若把△ABC向上平移2個單位,再向右平移2個單位得△A′B′C′,在圖中畫出△ABC變化后的圖形,并判斷線段AB和線段A′B′的關(guān)系.

查看答案和解析>>

同步練習(xí)冊答案