如圖,⊙O是Rt△ABC中以直角邊AB為直徑的圓,⊙O與斜邊AC交于D,過D作DH⊥AB于H,又過D作直線DE交BC于點E,使∠HDE=2∠A.
求證:(1)DE是⊙O的切線;(2)OE是Rt△ABC的中位線.
(1)連接OD,
則∠HOD=2∠A,
已知∠HDE=2∠A,
則∠HOD=∠HDE,
∵HD⊥AB,
∴∠HOD+∠HDO=90°,
∴∠HDE+∠HDO=90°,
即OD⊥DE,
又OD是半徑,
∴DE是⊙O的切線;

(2)∵DE是⊙O的切線,∠ABC=90°,
∴∠OBE=∠ODE=90°,
又OB=OD,OE=OE,
∴Rt△BOE≌Rt△DOE,
∴∠BOE=∠DOE,
∴∠HOD=∠BOE+∠DOE=2∠BOE,
又∠HOD=2∠A,
∴∠BOE=∠A,
∴OEAD,
而O是AB的中點,
故OE是Rt△ABC的中位線.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,AC為⊙O直徑,B為AC延長線上的一點,BD交⊙O于點D,∠BAD=∠B=30°.
(1)求證:BD是⊙O的切線;
(2)AB=3CB嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,點P是⊙O外一點,PA切⊙O于點A,∠O=60°,則∠P度數(shù)為______度.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,⊙P與x軸相切于坐標原點O,點A(0,2)是⊙P與y軸的交點,點B(-2
2
,0)在x軸上.連接BP交⊙P于點C,連接AC并延長交x軸于點D.
(1)求線段BC的長;
(2)求直線AC的關系式;
(3)當點B在x軸上移動時,是否存在點B,使△BOP相似于△AOD?若存在,求出符合條件的點B的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖(1),AB是⊙O的直徑,射線AT⊥AB,點P是射線AT上的一個動點(P與A不重合),PC與⊙O相切于C,過C作CE⊥AB于E,連接BC并延長BC交AT于點D,連接PB交CE于F.
(1)請你寫出PA、PD之間的關系式,并說明理由;
(2)請你找出圖中有哪些三角形的面積被PB分成兩等分,并加以證明;
(3)設過A、C、D三點的圓的半徑是R,當CF=
1
4
R時,求∠APC的度數(shù),并在圖(2)中作出點P.(要求尺規(guī)作圖,不寫作法,但要保留作圖痕跡)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,兩個半圓中,長為4的弦,AB與直徑CD平行且與小半圓相切,那么圖中陰影部分的面積等于多少?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知⊙O的半徑為3cm,圓心O到直線l的距離是2m,則直線l與⊙O的位置關系是______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,AB為⊙O的直徑,割線PCD交⊙O于C、D,∠PAC=∠PDA.
(1)求證:PA是⊙O的切線;
(2)若PA=6,CD=3PC,求PD的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,形如量角器的半圓O的直徑DE=12cm,形如三角板的△ABC中,∠ACB=90°,∠ABC=30°,BC=12cm半圓O以2cm/s的速度從左向右運動,在運動過程中,點D、E始終在直線BC上.設運動時間為t(s),當t=0s時,半圓O在△ABC的左側,OC=8cm.當t為何值時,△ABC的一邊所在直線與半圓O所在的圓相切?

查看答案和解析>>

同步練習冊答案