已知:如圖所示的一張矩形紙片ABCD(AD>AB),將紙片折疊一次,使點A與C重合,再展開,折痕EF交AD邊于E,交BC邊于F,分別連接AF和CE,AE=10.在線段AC上是否存在一點P,使得2AE2=AC•AP?若存在,請說明點P的位置,并予以證明;若不存在,請說明理由.

【答案】分析:過E作EP⊥AD交AC于P,則P就是所求的點,首先證明四邊形AFCE是菱形,然后根據(jù)題干條件證明△AOE∽△AEP,列出關(guān)系式.
解答:證明:過E作EP⊥AD交AC于P,則P就是所求的點.
當頂點A與C重合時,折痕EF垂直平分AC,
∴OA=OC,∠AOE=∠COF=90°,
∵在平行四邊形ABCD中,AD∥BC,
∴∠EAO=∠FCO,
∴△AOE≌△COF,
∴OE=OF
∴四邊形AFCE是菱形.
∴∠AOE=90°,又∠EAO=∠EAP,
由作法得∠AEP=90°,
∴△AOE∽△AEP,
,則AE2=A0•AP,
∵四邊形AFCE是菱形,
,
∴AE2=AC•AP,
∴2AE2=AC•AP.
點評:本題主要考查翻折變換的折疊問題,還涉及到的知識點有全等三角形的判定與性質(zhì).
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖所示的一張矩形紙片ABCD(AD>AB),將紙片折疊一次,使點A與C重合,再展開,折精英家教網(wǎng)痕EF交AD邊于E,交BC邊于F,分別連接AF、CE和EF,設(shè)EF與AC的交點為O.
(1)求證:四邊形AFCE是菱形;
(2)若AE=2
13
cm
,△ABF的為面積12cm2,求△ABF的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•樂清市模擬)已知:如圖所示的一張矩形紙片ABCD(AD>AB),將紙片折疊一次,使點A與點C重合,再展開,折痕EF交AD邊于點E,交BC邊于點F,分別連接AF和CE.
(1)求證:四邊形AFCE是菱形;
(2)若AE=10cm,△ABF的面積為24cm2,求△ABF的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖所示的一張矩形紙片ABCD(AD>AB),將紙片折疊一次,使點A與點C重合,再展開,折痕EF交AD邊于點E,交BC邊于點F,分別連結(jié)AF和CE.
(1)求證:四邊形AFCE是菱形;
(2)若AE=5cm,△CDE的周長為12cm,求矩形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖所示的一張矩形紙片ABCD(AD>AB),將紙片折疊一次,使點A與點C重合,再展開,折痕EF交AD邊于點E,交BC邊于點F,分別連結(jié)AF和CE.求證:四邊形AFCE是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖所示的一張矩形紙片ABCD(AD>AB),O是對角線AC的中點,過點O的直線EF⊥AC交AD邊于E,交BC邊于F.
(1)求證:四邊形AFCE是菱形;
(2)若AE=10cm,△ABF的面積為24cm2,求△ABF的周長.

查看答案和解析>>

同步練習冊答案