【題目】如圖,拋物線交軸于點(diǎn)和點(diǎn),交軸于點(diǎn).已知點(diǎn)的坐標(biāo)為,點(diǎn)為第二象限內(nèi)拋物線上的一個動點(diǎn),連接、、.
(1)求這個拋物線的表達(dá)式.
(2)當(dāng)四邊形面積等于4時,求點(diǎn)的坐標(biāo).
(3)①點(diǎn)在平面內(nèi),當(dāng)是以為斜邊的等腰直角三角形時,直接寫出滿足條件的所有點(diǎn)的坐標(biāo);
②在①的條件下,點(diǎn)在拋物線對稱軸上,當(dāng)時,直接寫出滿足條件的所有點(diǎn)的坐標(biāo).
【答案】(1);(2)或;(3)①,;②,(-1,5).
【解析】
(1)設(shè)拋物線的表達(dá)式為:y=a(x+3)(x1)=a(x2+2x3)=ax2+2ax3a,即3a=2,解得:a=,即可求解;
(2)設(shè)點(diǎn)P(x,),根據(jù)S=S四邊形ADCP=S△APO+S△CPOS△ODC=4列出方程即可求解;
(3)①根據(jù)等腰直角三角形的性質(zhì),構(gòu)造全等三角形即可求出M的坐標(biāo);
②根據(jù)題意作圖,根據(jù)①所求的M點(diǎn)坐標(biāo)結(jié)合圓周角的性質(zhì)與等腰直角三角形的性質(zhì)即可確定N點(diǎn)坐標(biāo).
(1)∵拋物線經(jīng)過點(diǎn)和點(diǎn)
設(shè)拋物線的表達(dá)式為:y=a(x+3)(x1)=a(x2+2x3)=ax2+2ax3a,
∴3a=2,解得:a=,
故拋物線的表達(dá)式為:;
(2)令x=0,得y=2
∴點(diǎn)C(0,2),
函數(shù)的對稱軸為:x=- =-1;
連接OP,設(shè)點(diǎn)P(x,),
則S=S四邊形ADCP=S△APO+S△CPOS△ODC
=×AO×yp+×OC×|xP|×CO×OD
=×3×()+×2×(x) ×2×1
=x23x+2,
∵四邊形面積等于4,
∴x23x+2=4
解得x1=-1,x2=-2,
∴P或;
(3) ①如圖,∵△CDM1是以CM1為斜邊的等腰直角三角形,
∴CD=DM1,∠CDM=90°,
∴∠QDM1+∠CDO=90°
作M1Q⊥AB于Q點(diǎn),
∴∠QDM1+∠QM1D=90°
∴∠CDO=∠QM1D
又∠DQM1=∠COD=90°
∴△DQM1≌△COD
QD=CO=2,M1Q=DO=1
∴OD=3, M1Q=1
∴M1(-3,1)
由圖形及等腰直角三角形的性質(zhì)可知M1、M2關(guān)于D點(diǎn)對稱,
設(shè)M2(p,q)
∴,
解得p=1,q=-1
∴M2(1,-1)
綜上M的坐標(biāo)為,;
②如圖,∵=90°,當(dāng)=可知N點(diǎn)為對稱軸直線x=-1與以圓D為圓心,DM2為半徑的圓的交點(diǎn),即N1,N2
∵r=DM2=
∴N1(-1,-),N2(1,);
如圖,當(dāng)時,
由①可得,,
∴,CD=DM1=DM2,
∴CM1=CM2,
則△是等腰直角三角形,
則
∴△是等腰直角三角形,
則N3,M2關(guān)于C點(diǎn)對稱,
設(shè)N3(x,y)
則,
解得x=-1,y=5
∴N3(-1,5)
綜上,N點(diǎn)坐標(biāo)為:,(-1,5).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,如果等邊三角形的一邊與軸平行或在軸上,則稱這個等邊三角形為水平正三角形.
(1)已知,,若是水平正三角形,則點(diǎn)坐標(biāo)的是_____(只填序號);①,②,③,④
(2)已知點(diǎn),,,以這三個點(diǎn)中的兩個點(diǎn)及平面內(nèi)的另一個點(diǎn)為頂點(diǎn),構(gòu)成一個水平正三角形,則這兩個點(diǎn)是 ,并求出此時點(diǎn)的坐標(biāo);
(3)已知的半徑為,點(diǎn)是上一點(diǎn),點(diǎn)是直線上一點(diǎn),若某個水平正三角形的兩個頂點(diǎn)為,,直接寫出點(diǎn)的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人進(jìn)行射擊比賽,兩人4次射擊的成績(單位:環(huán))如下:
甲:8,6,9,9;
乙:7,8,9,8.
(1)請將下表補(bǔ)充完整:
平均數(shù) | 眾數(shù) | 中位數(shù) | 方差 | |
甲 | 8 | 1.5 | ||
乙 | 8 | 8 |
(2)誰的成績較穩(wěn)定?為什么?
(3)分別從甲、乙兩人的成績中隨機(jī)各選取一次,則選取的兩個成績之和為16環(huán)的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑作半圓O,交BC于點(diǎn)D,連接AD,過點(diǎn)D作DE⊥AC,垂足為點(diǎn)E,交AB的延長線于點(diǎn)F.
(1)求證:EF是⊙O的切線.
(2)如果⊙O的半徑為5,sin∠ADE=,求BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“勤勞”是中華民族的傳統(tǒng)美德,學(xué)校要求同學(xué)們在家里幫助父母做一些力所能及的家務(wù).在本學(xué)期開學(xué)初,小穎同學(xué)隨機(jī)調(diào)查了部分同學(xué)寒假在家做家務(wù)的總時間,設(shè)被調(diào)查的每位同學(xué)寒假在家做家務(wù)的總時間為x小時,將做家務(wù)的總時間分為五個類別:A(0≤x<10),B(10≤x<20),C(20≤x<30),D(30≤x<40),E(x≥40).并將調(diào)查結(jié)果制成如下兩幅不完整的統(tǒng)計圖:
根據(jù)統(tǒng)計圖提供的信息,解答下列問題:
(1)本次共調(diào)查了 名學(xué)生;
(2)請根據(jù)以上信息直接在答題卡中補(bǔ)全條形統(tǒng)計圖;
(3)扇形統(tǒng)計圖中m的值是 ,類別D所對應(yīng)的扇形圓心角的度數(shù)是 度;
(4)若該校有800名學(xué)生,根據(jù)抽樣調(diào)查的結(jié)果,請你估計該校有多少名學(xué)生寒假在家做家務(wù)的總時間不低于20小時.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果批發(fā)市場規(guī)定,批發(fā)蘋果不少于時,批發(fā)價為5元/.小王攜帶現(xiàn)金4000元到這市場采購蘋果,并以批發(fā)價買進(jìn).
(Ⅰ)根據(jù)題意,填表:
購買數(shù)量 | ||||
花費(fèi)元 | ||||
剩余現(xiàn)金元 |
(Ⅱ)設(shè)購買的蘋果為,小王付款后還剩余現(xiàn)金元.求關(guān)于的函數(shù)解析式,并指出自變量的取值范圍;
(Ⅲ)根據(jù)題意填空:若小王剩余現(xiàn)金為700元,則他購買__________的蘋果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,線段AB=4,點(diǎn)C為線段AB上任意一點(diǎn)(與端點(diǎn)不重合),分別以AC、BC為邊在AB的同側(cè)作正方形ACDE和正方形CBGF,分別連接BF、EG交于點(diǎn)M,連接CM,設(shè)AC=x,S四邊形ACME=y,則y與x的函數(shù)表達(dá)式為y=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)P是AB下方的半圓上不與點(diǎn)A,B重合的一個動點(diǎn),點(diǎn)C為AP的中點(diǎn),連接CO并延長,交⊙O于點(diǎn)D,連接AD,過點(diǎn)D作⊙O的切線,交PB的延長線于點(diǎn)E,連接CE.
(1)求證:△DAC≌△ECP;
(2)填空:
①當(dāng)∠DAP=______°時,四邊形DEPC為正方形;
②在點(diǎn) P的運(yùn)動過程中,若⊙O的直徑為10,tan∠DCE=,則AD=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】運(yùn)算能力是一項重要的數(shù)學(xué)能力.王老師為幫助學(xué)生診斷和改進(jìn)運(yùn)算中的問題,對全班學(xué)生進(jìn)行了三次運(yùn)算測試.下面的氣泡圖中,描述了其中5位同學(xué)的測試成績.(氣泡圓的圓心橫、縱坐標(biāo)分別表示第一次和第二次測試成績,氣泡的大小表示三次成績的平均分的高低;氣泡越大平均分越高.)
①在5位同學(xué)中,有_____位同學(xué)第一次成績比第二次成績高;
②在甲、乙兩位同學(xué)中,第三次成績高的是_____.(填“甲”或“乙”)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com