【題目】如圖,在△ABC中,AB=AC,以AB為直徑作半圓O,交BC于點D,連接AD,過點D作DE⊥AC,垂足為點E,交AB的延長線于點F.
(1)求證:EF是⊙O的切線.
(2)如果⊙O的半徑為5,sin∠ADE=,求BF的長.
【答案】(1)答案見解析;(2).
【解析】試題分析:(1)連接OD,AB為⊙O的直徑得∠ADB=90°,由AB=AC,根據(jù)等腰三角形性質(zhì)得AD平分BC,即DB=DC,則OD為△ABC的中位線,所以OD∥AC,而DE⊥AC,則OD⊥DE,然后根據(jù)切線的判定方法即可得到結(jié)論;
(2)由∠DAC=∠DAB,根據(jù)等角的余角相等得∠ADE=∠ABD,在Rt△ADB中,利用解直角三角形的方法可計算出AD=8,在Rt△ADE中可計算出AE=,然后由OD∥AE,得△FDO∽△FEA,再利用相似比可計算出BF.
試題解析:(1)證明:連結(jié)OD
∵OD=OB∴∠ODB=∠DBO
又AB=AC
∴∠DBO=∠C
∴∠ODB =∠C
∴OD ∥AC
又DE⊥AC
∴DE ⊥OD
∴EF是⊙O的切線.
(2)∵AB是直徑
∴∠ADB=90 °
∴∠ADC=90 °
即∠1+∠2=90 °又∠C+∠2=90 °
∴∠1=∠C
∴∠1 =∠3
∴
∴
∴AD=8
在Rt△ADB中,AB=10∴BD=6
在又Rt△AED中,
∴
設(shè)BF=x
∵OD ∥AE
∴△ODF∽△AEF
∴ ,即,
解得:x=
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:
∵
∴
解答問題:
(1)在式中,第六項為 ,第n項為 ,上述求和的想法是通過逆用 法則,將式中各分?jǐn)?shù)轉(zhuǎn)化為兩個實數(shù)之差,使得除首末兩項外的中間各項可以 從而達(dá)到求和的目的.
(2)解方程
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,正方形OBAC的頂點A的坐標(biāo)為(8,8),點D,E分別為邊AB,AC上的動點,且不與端點重合,連接OD,OE,分別交對角線BC于點M,N,連接DE,若∠DOE=45°, 以下說法正確的是________(填序號).
①點O到線段DE的距離為8;②△ADE的周長為16;③當(dāng)DE∥BC時,直線OE的解析式為y=x; ④以三條線段BM,MN,NC為邊組成的三角形是直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(5分)(2015春鞍山期末)小王某月手機話費中的各項費用統(tǒng)計情況見下列圖表,請你根據(jù)圖表信息完成下列各題:
項目 | 月功能費 | 基本話費 | 長途話費 | 短信費 |
金額/元 | 5 | 50 |
(1)請將表格補充完整;
(2)請將條形統(tǒng)計圖補充完整;
(3)扇形統(tǒng)計圖中,表示短信費的扇形的圓心角是多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們不妨約定:對角線互相垂直的凸四邊形叫做“十字形”.
(1)①在平行四邊形,矩形,菱形、正方形中,一定是十字形的有 ;
②若凸四邊形ABCD是十字形,AC=a,BD=b,則該四邊形的面積為 ;
(2)如圖1,以等腰Rt△ABC的底邊AC為邊作等邊三角形△ACD,連接BD,交AC于點O, 當(dāng) ≤S 四邊形≤ 時,求BD的取值范圍;
(3)如圖2,以十字形ABCD的對角線AC與BD為坐標(biāo)軸,建立如圖所示的平面直角坐標(biāo)系xOy,若計 十字形ABCD的面積為S,記△AOB,△COD,△AOD,△BOC的面積分別為:S1,S2,S3,S4,且同時滿足列四個條件:
① ;② ;③十字形ABCD的周長為32:④∠ABC=60°; 若E為OA的中點,F為線段BO上一動點,連接EF,動點P從點E出發(fā),以1cm/s 的速度沿線段EF勻速運動到點F,再以2cms 的速度沿線段FB勻速運動到點B,到達(dá)點B 后停止運動,當(dāng)點P沿上述路線運動 到點B所需要的時間最短時,求點P走完全程所需的時間及直線EF的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xoy中,函數(shù)(x<0)的圖象與直線y=x+2交于點A(-3,m).
(1)求k,m的值;
(2)已知點P(a,b)是直線y=x上,位于第三象限的點,過點P作平行于x軸的直線,交直線y=x+2于點M,過點P作平行于y軸的直線,交函數(shù)(x<0)的圖象于點N.
①當(dāng)a=-1時,判斷線段PM與PN的數(shù)量關(guān)系,并說明理由;
②若PN≥PM結(jié)合函數(shù)的圖象,直接寫出b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一元二次方程ax2+bx+c=0(a≠0)中,下列說法:
①若a+b+c=0,則b2﹣4ac>0;
②若方程兩根為﹣1和2,則2a+c=0;
③若方程ax2+c=0有兩個不相等的實根,則方程ax2+bx+c=0必有兩個不相等的實根;
④若b=2a+c,則方程有兩個不相等的實根.其中正確的有( 。
A. ①②③ B. ①②④ C. ②③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為美化學(xué)校環(huán)境,建設(shè)綠色校園,陶治師生情操我校計劃用180元購買A、B兩種花卉苗共20棵,已知A種花卉苗每棵12元,B種花卉苗每棵8元.
(1)根據(jù)題意,甲、乙兩個同學(xué)分別列出了尚不完整的方程組如下:
根據(jù)甲、乙兩名同學(xué)所列的方程組,請你分別指出未知數(shù)x,y表示的意義,然后在方框中補全甲、乙兩名同學(xué)所列的方程組:
甲:x表示 ,y表示 ;
乙:x表示 ,y表示 ;
(2)求A、B兩種花卉各多少棵?(寫出完整的解答過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果店出售一種水果,每只定價20元時,每周可賣出300只.試銷發(fā)現(xiàn):
①每只水果每降價1元,每周可多賣出25只;
②每只水果每漲價1元,每周將少賣出10只;
③水果定價不能低于18元.
我們知道,銷售收入=銷售單價×銷售量,設(shè)降價出售時的銷售收入為y1元,漲價出售時的銷售收入為y2元,水果的定價為x元/只.
根據(jù)以上信息,回答下列問題:
(1)請直接寫出y1、y2與x的函數(shù)關(guān)系式,并寫出x的取值范圍;
y1= ;y2= ;
(2)你認(rèn)為應(yīng)當(dāng)如何定價才能使一周的銷售收入最多?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com