【題目】已知拋物線y=(x﹣1)2﹣1.

(1)該拋物線的對稱軸是 , 頂點坐標
(2)選取適當?shù)臄?shù)據(jù)填入下表,并在圖中的直角坐標系內(nèi)描點畫出該拋物線的圖象;

x

y


(3)根據(jù)圖象,直接寫出當y<0時,x的取值范圍.

【答案】
(1)x=1;(1,﹣1)
(2)列表:

x

﹣2

﹣1

0

1

2

3

y

8

3

0

﹣1

0

3


描點、連線:

(3)由函數(shù)圖象知,當0<x<2時,y<0
【解析】解:(1)∵拋物線的關系式是y=(x﹣1)2﹣1,
∴該拋物線的對稱軸是 x=1,頂點坐標 (1,﹣1);
根據(jù)頂點式函數(shù)方程直接填空;利用第一小題中拋物線的頂點坐標在對稱軸的兩側分別取x的值,得出其對應的y的值,描出各點,畫出函數(shù)圖象即可.畫圖的方法:列表、描點、連線是解題的關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為給研究制定《中考改革實施方案》提出合理化建議,教研人員對九年級學生進行了隨機抽樣調(diào)查,要求被抽查的學生從物理、化學、政治、歷史、生物和地理這六個選考科目中,挑選出一科作為自己的首選科目,將調(diào)查數(shù)據(jù)匯總整理后,繪制出了如圖的兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中信息解答下列問題:

(1)被抽查的學生共有多少人?
(2)將折線統(tǒng)計圖補充完整;
(3)我市現(xiàn)有九年級學生約40000人,請你估計首選科目是物理的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市為了節(jié)約用水,采用分段收費標準.若某戶居民每月應交水費y()與用水量x(立方米)之間關系的圖象如圖所示,根據(jù)圖象回答:

(1)該市自來水收費,每戶用水不超過5立方米時,每立方米收費多少元?超過5立方米時,超過的部分每立方米收費多少元?

(2)求出yx之間的關系式.

(3)若某戶居民某月用水量為3.5立方米,則應交水費多少元?若某戶居民某月交水費17元,則該戶居民用水多少立方米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在中,邊上的一點,的中點,過點的平行交延長點,且,連接

1)求證:的中點;

2)若,試判斷四邊形的形狀,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是某水庫大壩的橫截面示意圖,已知AD∥BC,且AD、BC之間的距離為15米,背水坡CD的坡度i=1:0.6,為提高大壩的防洪能力,需對大壩進行加固,加固后大壩頂端AE比原來的頂端AD加寬了2米,背水坡EF的坡度i=3:4,則大壩底端增加的長度CF是( )米.

A.7
B.11
C.13
D.20

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形紙片,為正方形邊上的一點(不與點,點重合).將正方形紙片折疊,使點落在點處,點落在點處,于點,折痕為,連接于點,連接.下列結論:①;②;③平分;④;⑤,其中正確結論的個數(shù)是(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點A在函數(shù)y1=﹣ (x>0)的圖象上,點B在直線y2=kx+1+k(k為常數(shù),且k≥0)上.若A,B兩點關于原點對稱,則稱點A,B為函數(shù)y1 , y2圖象上的一對“友好點”.請問這兩個函數(shù)圖象上的“友好點”對數(shù)的情況為( )
A.有1對或2對
B.只有1對
C.只有2對
D.有2對或3對

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB∥CD,直線AB、CD被直線EF所截,EG平分∠BEF,F(xiàn)G平分∠DFE,

(1)若∠AEF=50°,求∠EFG的度數(shù).

(2)判斷EG與FG的位置關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】試說明:用15塊大小是4×1的矩形地磚和一塊大小是2×2的正方形地磚能不能恰好鋪蓋一塊大小是8×8的正方形地面.

查看答案和解析>>

同步練習冊答案