【題目】如圖B在線段AC,D,EAC的同側,A=C=90°,BDBE,AD=BC.

(1)求證:AC=AD+CE;

(2)AD=3,AB=5,P為線段AB上的動點,連接DP,PQDP,交直線BE于點Q,當點PA,B兩點不重合時,的值

【答案】(1)詳見解析;(2).

【解析】試題分析:(1)根據(jù)同角的余角相等求出∠1=∠E,再利用“角角邊”證明△ABD和△CEB全等,根據(jù)全等三角形對應邊相等可得AB=CE,然后根據(jù)AC=AB+BC整理即可得證;

(2)過點QQF⊥BCF,根據(jù)△BFQ和△BCE相似可得,然后求出QF=BF,再根據(jù)△ADP和△FPQ相似可得,然后整理得到(AP-BF)(5-AP)=0,從而求出AP=BF,最后利用相似三角形對應邊成比例可得,從而得解.

試題解析:(1)∵BDBE,

∴∠1+2=180°-90°=90°

∵∠C=90°,

∴∠2+E=180°-90°=90°,

∴∠1=E

∵在△ABD和△CEB中,

,

∴△ABD≌△CEBAAS),

AB=CE,

AC=AB+BC=AD+CE

2)如圖,過點QQFBCF,

則△BFQ∽△BCE

,

,

QF=BF,

DPPQ

∴∠APD+FPQ=180°-90°=90°,

∵∠APD+ADP=180°-90°=90°

∴∠ADP=FPQ,

又∵∠A=PFQ=90°,

∴△ADP∽△FPQ,

,

,

5AP-AP2+APBF=3BF,

整理得,(AP-BF)(AP-5=0,

∵點PAB兩點不重合,

AP≠5

AP=BF,

由△ADP∽△FPQ得,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,CD是邊AB上的高,且

(1)求證:ACD∽△CBD;

(2)求∠ACB的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,沿DE折疊長方形ABCD的一邊,使點C落在AB邊上的點F處,若AD=8,且AFD的面積為60,則DEC的面積為( 。

A.

B.

C. 18

D. 20

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將大小不同的兩個正方形按圖1,圖2的方式擺放.若圖1中陰影部分的面積是6,圖2中陰影部分的面積是5,則大正方形的面積是________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,∠ACB與∠CAB的平分線交于點P,PDAB于點D,若△APC△APD的周長差為,四邊形BCPD的周長為12+,則BC等于______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:對于依次排列的多項式x+a,x+b,x+c,x+d(a,b,c,d是常數(shù)),當它們滿足在,且M為常數(shù)時,則稱ab,cd是一組平衡數(shù),M是該組平衡數(shù)的平衡因子,例如:對于多項式x+2,x+1,x+6,x+5,因為,所以2,16,5是一組平衡數(shù),4是該組平衡數(shù)的平衡因子.

(1)已知24,79是一組平衡數(shù),求該組平衡數(shù)的平衡因子M

(2)a,bc,d是一組平衡數(shù),a=-4,d=3,請直接寫出組b,c的值;

(3)a,bc,d之間滿是什么數(shù)量關系時,它們是一組平衡數(shù),并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面材料:

小昊遇到這樣一個問題:如圖1,在ABC中,∠ACB=90°,BEAC邊上的中線,點DBC邊上,CD:BD=1:2,ADBE相交于點P,求的值.

小昊發(fā)現(xiàn),過點AAFBC,交BE的延長線于點F,通過構造AEF,經(jīng)過推理和計算能夠使問題得到解決(如圖2).請回答的值為 

參考小昊思考問題的方法,解決問題:

如圖 3,在ABC中,∠ACB=90°,點DBC的延長線上,ADAC邊上的中線BE的延長線交于點P,DC:BC:AC=1:2:3 .

(1)求的值;

(2)若CD=2,則BP=__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD的頂點A,Bx軸上,A在點B的左側,Dy軸的正半軸上,BAD=60°,A的坐標為(-2,0).

(1)求線段AD所在直線的表達式;

(2)動點P從點A出發(fā),以每秒1個單位長度的速度按照A→D→C→B→A的順序在菱形的邊上勻速運動一周,設運動時間為tt為何值時,以點P為圓心、以1為半徑的圓與對角線AC相切?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點A(3,4),點B為直線x=1上的動點,設B(-1,y).

(1)如圖①,若△ABO是等腰三角形且AO=AB時,求點B的坐標;

(2)如圖②,若點Cx,0)且-1<x<3,BCAC垂足為點C;

①當x=0時,求tan∠BAC的值;

②若ABy軸正半軸的所夾銳角為α,當點C在什么位置時tanα的值最大?

查看答案和解析>>

同步練習冊答案