【題目】如圖,已知AB是⊙O的直徑,AC是弦,直線EF經(jīng)過點C,AD⊥EF于點D,∠DAC=∠BAC.
(1)求證:EF是⊙O的切線;
(2)若⊙O的半徑為2,∠ACD=30°,求圖中陰影部分的面積.
【答案】(1)見解析;(2)
【解析】
(1)連接OC,由OA=OC,利用等邊對等角得到∠OAC=∠OCA,由∠DAC=∠BAC,等量代換得到一對內錯角相等,得到AD與OC平行,由AD垂直于EF,得到OC垂直于EF,即可得到EF為圓O的切線;
(2)由∠ACD的度數(shù)求出∠OCA為60°,確定出三角形AOC為等邊三角形,由半徑為2求出AC的長,在直角三角形ACD中,由30度所對的直角邊等于斜邊的一半求出AD的長,再利用勾股定理求出CD的長,由扇形AOC面積減去三角形AOC面積求出弓形的面積,再由三角形ACD面積減去弓形面積即可求出陰影部分面積.
(1)連接OC,
∵OA=OC,
∴∠OAC=∠OCA,
∵∠DAC=∠BAC,
∴∠DAC=∠OCA,
∴AD∥OC,
∵AD⊥EF,
∴OC⊥EF,
則EF為圓O的切線;
(2)∵∠ACD=30°,∠ADC=90°,
∴∠CAD=∠OCA=60°,
∴△AOC為等邊三角形,
∴AC=OC=OA=2,
在Rt△ACD中,∠ACD=30°,
∴AD=AC=1,根據(jù)勾股定理得:CD=,
∴S陰影=S△ACD-(S扇形AOC-S△AOC)=×1×-()=.
科目:初中數(shù)學 來源: 題型:
【題目】[知識背景]:
數(shù)軸上,點A,B表示的數(shù)為a,b,則A,B兩點的距離AB=|a﹣b|,A、B的中點P表示的數(shù)為.
[知識運用]:
已知式子(a+4)x3+2x2﹣x+3是關于x的二次三項式,且二次項系數(shù)為b,且a,b在數(shù)軸上對應的點分別為A,B(如圖1),解答下列問題:
(1)a= ,b= ,AB= ;
(2)若點A以每秒2個單位的長度沿數(shù)軸向右運動,t秒后到達原點O,求t的值;
(3)若點A,B都以每秒2個單位長度的速度沿數(shù)軸向右運動到達點M和點N,而O點不動,經(jīng)過t秒后,M,O,N三點中,其中一點是另外兩點的中點,求此時t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠A=45°,D是AC邊上一點,⊙O經(jīng)過D、A、B三點,OD∥BC.
(1)求證:BC與⊙O相切;
(2)若OD=15,AE=7,求BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察下列每一列數(shù),按規(guī)律填空
(1) , ,……
(2) , ,……
(3) , ,……
(4)在(1)列數(shù)中第100個數(shù)是 ,在(2)列數(shù)中第200個數(shù)是 ,在(3)列數(shù)中第199個數(shù)是 。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=-x2-x+與x軸交于A、B兩點(點A在點B的左側),與y軸于點C,已知點D(0,-).
(1)求直線AC的解析式;
(2)如圖1,P為直線AC上方拋物線上的一動點,當△PBD的面積最大時,過P作PQ⊥x軸于點Q,M為拋物線對稱軸上的一動點,過M作y軸的垂線,垂足為點N,連接PM、NQ,求PM+MN+NQ的最小值;
(3)在(2)問的條件下,將得到的△PBQ沿PB翻折得到△PBQ′,將△PBQ′沿直線BD平移,記平移中的△PBQ′為△P′B′Q″,在平移過程中,設直線P′B′與x軸交于點E,則是否存在這樣的點E,使得△B′EQ″為等腰三角形?若存在,求此時OE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線與軸交于點,與軸交于兩點,其對稱軸與軸交于點.
(1)求拋物線的解析式和對稱軸;
(2)在拋物線的對稱軸上是否存在一點,使的周長最小?若存在,請求出點的坐標;若不存在,請說明理由;
(3)連接,在直線的下方的拋物線上,是否存在一點,使的面積最大?若存在,請求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】⑴ 閱讀理解:我們知道在直角三角形中,有無數(shù)組勾股數(shù),例如:5、12、13;9、40、41;……但其中也有一些特殊的勾股數(shù),例如:3、4、5;是三個連續(xù)正整數(shù)組成的勾股數(shù).
解決問題:① 在無數(shù)組勾股數(shù)中,是否存在三個連續(xù)偶數(shù)能組成勾股數(shù)?
答: ,若存在,試寫出一組勾股數(shù): .
② 在無數(shù)組勾股數(shù)中,是否還存在其它的三個連續(xù)正整數(shù)能組成勾股數(shù)?若存在,求出勾股數(shù),若不存在,說明理由.
③ 在無數(shù)組勾股數(shù)中,是否存在三個連續(xù)奇數(shù)能組成勾股數(shù)?若存在,求出勾股數(shù),若不存在,說明理由.
⑵ 探索升華:是否存在銳角△ABC三邊也為連續(xù)正整數(shù);且同時還滿足:∠B>∠C>∠A;∠ABC=2∠BAC?若存在,求出△ABC三邊的長;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】1876年,美國總統(tǒng)Garfield用如圖所示的兩個全等的直角三角形證明了勾股定理,若圖中,,,則下面結論錯誤的是( )
A. B. C. D. 是等腰直角三角形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,BC是⊙O的直徑,∠ABC=30°,過點B作⊙O的切線BD,與CA的延長線交于點D,與半徑AO的延長線交于點E,過點A作⊙O的切線AF,與直徑BC的延長線交于點F.
(1)求證:△ACF∽△DAE;
(2)若S△AOC=,求DE的長;
(3)連接EF,求證:EF是⊙O的切線.
【答案】(1) 見解析; (2)3 ;(3)見解析.
【解析】試題分析:(1)根據(jù)圓周角定理得到∠BAC=90°,根據(jù)三角形的內角和得到∠ACB=60°根據(jù)切線的性質得到∠OAF=90°,∠DBC=90°,于是得到∠D=∠AFC=30°由相似三角形的判定定理即可得到結論;
(2)根據(jù)S△AOC=,得到S△ACF=,通過△ACF∽△DAE,求得S△DAE=,過A作AH⊥DE于H,解直角三角形得到AH=DH=DE,由三角形的面積公式列方程即可得到結論;
(3)根據(jù)全等三角形的性質得到OE=OF,根據(jù)等腰三角形的性質得到∠OFG=(180°﹣∠EOF)=30°,于是得到∠AFO=∠GFO,過O作OG⊥EF于G,根據(jù)全等三角形的性質得到OG=OA,即可得到結論.
試題解析:(1)證明:∵BC是⊙O的直徑,∴∠BAC=90°,∵∠ABC=30°,∴∠ACB=60°
∵OA=OC,∴∠AOC=60°,∵AF是⊙O的切線,∴∠OAF=90°,∴∠AFC=30°,∵DE是⊙O的切線,∴∠DBC=90°,∴∠D=∠AFC=30,∵∠DAE=ACF=120°,∴△ACF∽△DAE;
(2)∵∠ACO=∠AFC+∠CAF=30°+∠CAF=60°,∴∠CAF=30°,∴∠CAF=∠AFC,∴AC=CF,∴OC=CF,∵S△AOC=,∴S△ACF=,∵∠ABC=∠AFC=30°,∴AB=AF,∵AB=BD,∴AF=BD,∴∠BAE=∠BEA=30°,∴AB=BE=AF,∴,∵△ACF∽△DAE,∴=,∴S△DAE=,過A作AH⊥DE于H,∴AH=DH=DE,∴S△ADE=DEAH=×=,∴DE=;
(3)∵∠EOF=∠AOB=120°,∴∠OEB=∠AFO,在△AOF與△BOE中,∵∠OBE=∠OAF,∠OEB=∠AFO,OA=OB,∴△AOF≌△BEO,∴OE=OF,∴∠OFG=(180°﹣∠EOF)=30°,∴∠AFO=∠GFO,過O作OG⊥EF于G,∴∠OAF=∠OGF=90°,在△AOF與△OGF中,∵∠OAF=∠OGF,∠AFO=∠GFO,OF=OF,∴△AOF≌△GOF,∴OG=OA,∴EF是⊙O的切線.
【題型】解答題
【結束】
25
【題目】如圖,在平面直角坐標系中,O為原點,四邊形ABCO是矩形,點A,C的坐標分別是A(0,2)和C(2,0),點D是對角線AC上一動點(不與A,C重合),連結BD,作DE⊥DB,交x軸于點E,以線段DE,DB為鄰邊作矩形BDEF.
(1)填空:點B的坐標為 ;
(2)是否存在這樣的點D,使得△DEC是等腰三角形?若存在,請求出AD的長度;若不存在,請說明理由;
(3)①求證:;
②設AD=x,矩形BDEF的面積為y,求y關于x的函數(shù)關系式(可利用①的結論),并求出y的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com