【題目】△ABC中,BC>AB>AC,∠ACB=50°,點(diǎn)D、點(diǎn)E是射線BA上的兩個(gè)點(diǎn),且滿足AD=AC,BE=BC,則∠DCE的度數(shù)為 .
【答案】25°
【解析】解:點(diǎn)D、點(diǎn)E是射線BA上的兩個(gè)點(diǎn),如圖,
∵BE=BC,∴∠BEC=(180°﹣∠ABC)÷2,
∵AD=AC,∴∠ADC=(180°﹣∠DAC)÷2=∠BAC÷2,
∵∠DCE=∠BEC﹣∠ADC,
∴∠DCE=(180°﹣∠ABC)÷2﹣∠BAC÷2=(180°﹣∠ABC﹣∠BAC)÷2
=∠ACB÷2=50°÷2=25°,
所以答案是:25°.
【考點(diǎn)精析】本題主要考查了等腰三角形的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握等腰三角形的兩個(gè)底角相等(簡(jiǎn)稱:等邊對(duì)等角)才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖1,點(diǎn)D是△ABC的邊BC的中點(diǎn),DE⊥AC,DF⊥AB,垂足分別為E,F(xiàn),且BF=CE.
(1)求證:AE=AF;
(2)如圖2,若∠BAC=60°,△ABD的面積為4,連接AD交EF于M,連接BM、CM,在不添加任何輔助線的情況下,請(qǐng)直接寫出圖中所有面積為1的三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,過點(diǎn)A引射線AH,交邊CD于點(diǎn)H(點(diǎn)H與點(diǎn)D不重合).通過翻折,使點(diǎn)B落在射線AH上的點(diǎn)G處,折痕AE交BC于E,延長(zhǎng)EG交CD于F.
(1)如圖①,當(dāng)點(diǎn)H與點(diǎn)C重合時(shí),可得FGFD.(大小關(guān)系)
(2)如圖②,當(dāng)點(diǎn)H為邊CD上任意一點(diǎn)時(shí),猜想FG與FD的數(shù)量關(guān)系,并說明理由.
(3)在圖②中,當(dāng)AB=8,BE=3時(shí),利用探究的結(jié)論,求CF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將菱形紙片ABCD折疊,使點(diǎn)A恰好落在菱形的對(duì)稱中心O處,折痕為EF,若菱形ABCD的邊長(zhǎng)為2cm,∠A=120°,則EF=cm.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com