【題目】如圖,在每個(gè)小正方形的邊長為1的網(wǎng)格中,A,B,D,E為格點(diǎn),C,的延長線的交點(diǎn).

(Ⅰ)的結(jié)果為_________________.

(Ⅱ)若點(diǎn)R在線段上,點(diǎn)S在線段上,點(diǎn)T在線段上,且滿足四邊形為菱形,請?jiān)谌鐖D所示的網(wǎng)格中,用無刻度的直尺,畫出菱形,并簡要說明點(diǎn)R,S,T的位置是如何找到的(不要求證明)____________________.

【答案】; 見解析;

【解析】

(Ⅰ)根據(jù)題意利用,進(jìn)行分析計(jì)算即可得出答案;

(Ⅱ)根據(jù)題意利用菱形的性質(zhì)即對角線互相垂直平分進(jìn)行分析即可.

解:(Ⅰ)由題意可知

故答案為:

(Ⅱ)如圖,取格點(diǎn)F,G,H,連接GH,連接AF分別交GH,BC于點(diǎn)O,S;AC與網(wǎng)格線的交點(diǎn)為T,連接TO并延長交AB于點(diǎn)R.連接RSST得到四邊形ARST即為所求.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在“五四青年節(jié)”來臨之際,某校舉辦了以“我的青春我做主”為主題的演講比賽.并從參加比賽的學(xué)生中隨機(jī)抽取部分學(xué)生的演講成績進(jìn)行統(tǒng)計(jì)(等級(jí)記為:優(yōu)秀,:良好,:一般,:較差),并制作了如下統(tǒng)計(jì)圖表(部分信息未給出).

等級(jí)

人數(shù)

20

10

請根據(jù)統(tǒng)計(jì)圖表中的信息解答下列問題:

1)這次共抽取了______名參加演講比賽的學(xué)生,統(tǒng)汁圖中________,_______;

2)求扇形統(tǒng)計(jì)圖中演講成績等級(jí)為“一般”所對應(yīng)扇形的圓心角的度數(shù);

3)若該校學(xué)生共2000人,如果都參加了演講比賽,請你估計(jì)成績達(dá)到優(yōu)秀的學(xué)生有多少人?

4)若演講比賽成績?yōu)?/span>等級(jí)的學(xué)生中恰好有2名女生,其余的學(xué)生為男生,從等級(jí)的學(xué)生中抽取兩名同學(xué)參加全市演講比賽,請用列表或畫樹狀圖的方法求出“恰好抽中—名男生和一名女生”的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線經(jīng)過點(diǎn),點(diǎn),與x軸交于另一點(diǎn)C,頂點(diǎn)為D,連接

(1)求該拋物線的解析式;

(2)點(diǎn)P為該拋物線上一動(dòng)點(diǎn)(與點(diǎn)B,C不重合),設(shè)點(diǎn)P的橫坐標(biāo)為t,

①當(dāng)點(diǎn)P在直線的下方運(yùn)動(dòng)時(shí),求面積的最大值;

②該拋物線上是否存在點(diǎn)P,使得?若存在,請直接寫出點(diǎn)P的坐標(biāo)若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的網(wǎng)格中,已知線段,現(xiàn)要在該網(wǎng)格內(nèi)再確定格點(diǎn)和格點(diǎn),某數(shù)學(xué)探究小組在探究時(shí)發(fā)現(xiàn)以下結(jié)論:以下結(jié)論不正確的是(

A.將線段平移得到線段,使四邊形為正方形的有2種;

B.將線段平移得到線段,使四邊形為菱形的(正方形除外)有3種;

C.將線段平移得到線段,使四邊形為矩形的(正方形除外)有兩種;

D.不存在以為對角線的四邊形是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知菱形中,為對角線,點(diǎn)的中點(diǎn),連接于點(diǎn),的垂直平分線于點(diǎn),交于點(diǎn),連接.

1)若,求證:四邊形是正方形

2)已知,求的長;

3)若固定,設(shè),將繞著點(diǎn)從點(diǎn)開始逆時(shí)針旋轉(zhuǎn)過程中,菱形也隨之變化,且滿足,若是直角三角形,直接寫出的值;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市中心城區(qū)居民用水實(shí)行以戶為單位的三級(jí)階梯收費(fèi)辦法:

級(jí):居民每戶每月用水不超過18噸時(shí),每噸收水費(fèi)3元;

級(jí):居民每戶每月用水超過18噸但不超過25噸,未超過18噸的部分按照第級(jí)標(biāo)準(zhǔn)收費(fèi),超過的部分每噸收水費(fèi)4元;

級(jí):居民每戶每月用水超過25噸,未超過25噸的部分按照第級(jí)標(biāo)準(zhǔn)收費(fèi),超過的部分每噸收水費(fèi)6元.

現(xiàn)把上述水費(fèi)階梯收費(fèi)辦法稱為方案;假設(shè)還存在方案:居民每戶月用水一律按照每噸4元的標(biāo)準(zhǔn)繳費(fèi).

設(shè)一戶居民月用水x噸.

)根據(jù)題意填表:

)設(shè)方案應(yīng)繳水費(fèi)為元,方案應(yīng)繳水費(fèi)為元,分別求,關(guān)于x的函數(shù)解析式;

)當(dāng)時(shí),通過計(jì)算說明居民選擇哪種付費(fèi)方式更合算.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店從機(jī)械廠購進(jìn)甲、乙兩種零件進(jìn)行銷售,若甲種零件每件的進(jìn)價(jià)是乙種零件每件進(jìn)價(jià)的,用1600元單獨(dú)購進(jìn)一種零件時(shí),購進(jìn)甲種零件的數(shù)量比乙種零件的數(shù)量多4.

(1)求每件甲種零件和每件乙種零件的進(jìn)價(jià)分別為多少元?

(2)若該商店計(jì)劃購進(jìn)甲、乙兩種零件共110件,準(zhǔn)備將零件批發(fā)給零售商. 甲種零件的批發(fā)價(jià)是每件100元,乙種零件的批發(fā)價(jià)是每件130元,該商店計(jì)劃將這批產(chǎn)品全部售出從零售商處獲利不低于3000元,那么該商店最多購進(jìn)多少件甲種零件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為滿足市場需求,某超市在五月初五“端午節(jié)”來臨前夕,購進(jìn)一種品牌

粽子,每盒進(jìn)價(jià)是40元,超市規(guī)定每盒售價(jià)不得少于45元根據(jù)以往銷售經(jīng)驗(yàn)發(fā)現(xiàn):當(dāng)售價(jià)定為每盒45元時(shí),每天可賣出700盒,每盒售價(jià)每提高1元,每天要少賣出20盒

1試求出每天的銷售量y與每盒售價(jià)之間的函數(shù)關(guān)系式;4分

2當(dāng)每盒售價(jià)定為多少元時(shí),每天銷售的利潤最大?最大利潤是多少?6分

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABO的直徑,ACO的切線,切點(diǎn)為A,BCO于點(diǎn)D,點(diǎn)EAC的中點(diǎn).

1)求證:直線DEO的切線;

2)若O半徑為1BC4,求圖中陰影部分的面積.

查看答案和解析>>

同步練習(xí)冊答案