【題目】如圖,拋物線y=ax2+bx+3經(jīng)過(guò)A(﹣3,0),B(﹣1,0)兩點(diǎn).
(1)求拋物線的解析式;
(2)設(shè)拋物線的頂點(diǎn)為M,直線y=﹣2x+9與y軸交于點(diǎn)C,與直線OM交于點(diǎn)D.現(xiàn)將拋物線平移,保持頂點(diǎn)在直線OD上.若平移的拋物線與射線CD(含端點(diǎn)C)只有一個(gè)公共點(diǎn),求它的頂點(diǎn)橫坐標(biāo)的值或取值范圍.
【答案】(1)y=x2+4x+3;(2)h=4,頂點(diǎn)橫坐標(biāo)的取值范圍是≤h<或h=4.
【解析】
試題分析:(1)直接用待定系數(shù)法就可以求出拋物線的解析式;
(2)由(1)的解析式求出拋物線的頂點(diǎn)坐標(biāo),根據(jù)拋物線的頂點(diǎn)坐標(biāo)求出直線OD的解析式,設(shè)平移后的拋物線的頂點(diǎn)坐標(biāo)為(h,h),就可以表示出平移后的解析式,當(dāng)拋物線經(jīng)過(guò)點(diǎn)C時(shí)就可以求出h值,拋物線與直線CD只有一個(gè)公共點(diǎn)時(shí)可以得出,得x2+(﹣2h+2)x+h2+h﹣9=0,從而得出△=(﹣2h+2)2﹣4(h2+h﹣9)=0求出h=4,從而得出結(jié)論.
解:(1)拋物線解析式y(tǒng)=ax2+bx+3經(jīng)過(guò)A(﹣3,0),B(﹣1,0)兩點(diǎn),
∴,
解得,
∴拋物線的解析式為y=x2+4x+3.
(2)由(1)配方得y=(x+2)2﹣1,
∴拋物線的頂點(diǎn)坐標(biāo)為M(﹣2,﹣1),
∴直線OD的解析式為y=x,
于是可設(shè)平移后的拋物線的頂點(diǎn)坐標(biāo)為(h,h),
∴平移后的拋物線的解析式為y=(x﹣h)2+h,
當(dāng)拋物線經(jīng)過(guò)點(diǎn)C時(shí),∵C(0,9),
∴h2+h=9.
解得h=,
∴當(dāng)≤h<時(shí),平移后的拋物線與射線CD只有一個(gè)公共點(diǎn);
當(dāng)拋物線與直線CD只有一個(gè)公共點(diǎn)時(shí),
由方程組,
得x2+(﹣2h+2)x+h2+h﹣9=0,
∴△=(﹣2h+2)2﹣4(h2+h﹣9)=0,
解得h=4,
此時(shí)拋物線y=(x﹣4)2+2與直線CD唯一的公共點(diǎn)為(3,3),點(diǎn)(3,3)在射線CD上,符合題意.
故平移后拋物線與射線CD只有一個(gè)公共點(diǎn)時(shí),頂點(diǎn)橫坐標(biāo)的取值范圍是≤h<或h=4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,每個(gè)小正方形的邊長(zhǎng)為1,點(diǎn)A的坐標(biāo)為(﹣3,2).請(qǐng)按要求分別完成下列各小題:
(1)把△ABC向下平移4個(gè)單位得到△A1B1C1,畫出△A1B1C1,點(diǎn)A1的坐標(biāo)是 ;
(2)畫出△ABC關(guān)于y軸對(duì)稱的△A2B2C2;點(diǎn)C2的坐標(biāo)是 ;
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=20cm,AC=12cm,點(diǎn)P從點(diǎn)B出發(fā)以每秒3cm的速度向點(diǎn)A運(yùn)動(dòng),點(diǎn)Q從點(diǎn)A同時(shí)出發(fā)以每秒2cm的速度向點(diǎn)C運(yùn)動(dòng),其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng),當(dāng)△APQ是以PQ為底的等腰三角形時(shí),運(yùn)動(dòng)的時(shí)間是( )
A.2.5秒 B.3秒 C.3.5秒 D.4秒
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列正多邊形材料中,不能單獨(dú)用來(lái)鋪滿地面的是( )
(A)正三角形 (B)正四邊形 (C)正五邊形 (D)正六邊形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在下列長(zhǎng)度的四組線段中,能組成三角形的是( 。
A. 3,7,15 B. 1,2,4 C. 5,5,10 D. 2,3,3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把一張多邊形的紙片剪去其中某個(gè)角,剩下的部分是一個(gè)四邊形,則這張紙片原來(lái)的形狀不可能是是( 。
A. 六邊形 B. 五邊形 C. 四邊形 D. 三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,兩條互相平行的河岸,在河岸一邊測(cè)得AB為20米,在另一邊測(cè)得CD為70米,用測(cè)角器測(cè)得∠ACD=30°,測(cè)得∠BDC=45°,求兩條河岸之間的距離.(≈1.7,結(jié)果保留整數(shù))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com