精英家教網 > 初中數學 > 題目詳情
14、如圖,將長方形ABCD沿對角線BD折疊,使C點落在G點處,BG交AD于點E,若DC=4,BC=8,那么ED
的長為
5
分析:根據矩形的性質得到AB=CD=4,AD=BC=8,再根據折疊的性質得到∠EBD=∠CBD,而∠CBD=∠EDB,得∠EBD=∠EDB,得到EB=ED,設ED=x,則BE=x,AE=8-x,在Rt△ABE中根據勾股定理得到關于x的方程,解方程即可.
解答:解:∵四邊形ABCD是矩形,
∴AB=CD=4,AD=BC=8,
又∵將長方形ABCD沿對角線BD折疊,使C點落在G點處,
∴∠EBD=∠CBD,
而∠CBD=∠EDB,
∴∠EBD=∠EDB,
∴EB=ED,
設ED=x,則BE=x,AE=8-x,
在Rt△ABE中,AB2+AE2=BE2,即42+(8-x)2=x2,解得x=5.
故答案為5.
點評:本題考查了折疊的性質:折疊前后兩圖形全等,即對應線段相等,對應角相等.也考查了矩形的性質以及勾股定理.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

11、如圖,將長方形ABCD沿對角線AC剪開,得到兩個三角形為△ABC和△DEF.若將△DEF經過不同的變換,使得△ABC和△DEF有一條邊重合,這樣得到的不同的三角形有( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,將面積為a2的小正方形和面積為b2的大長方形放在一起(a>0,b>0),求三角形ABC的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,將長方形ABCD沿對角線BD折疊,使點C恰好落在如圖C′的位置,若∠DBC=15°,則∠ABC′=( 。

查看答案和解析>>

科目:初中數學 來源: 題型:單選題

如圖,將長方形ABCD沿對角線AC剪開,得到兩個三角形為△ABC和△DEF.若將△DEF經過不同的變換,使得△ABC和△DEF有一條邊重合,這樣得到的不同的三角形有


  1. A.
    2個
  2. B.
    3個
  3. C.
    4個
  4. D.
    6個

查看答案和解析>>

科目:初中數學 來源: 題型:單選題

如圖,將長方形ABCD沿對角線BD折疊,使點C恰好落在如圖C′的位置,若∠DBC=15°,則∠ABC′=


  1. A.
    30°
  2. B.
    45°
  3. C.
    60°
  4. D.
    75°

查看答案和解析>>

同步練習冊答案