分析 (1)由解析式求得C的坐標(biāo),然后根據(jù)tan∠ABC=$\frac{2}{3}$求得OB=3,從而求得B的坐標(biāo),進(jìn)而根據(jù)待定系數(shù)法即可求得解析式;
(2)過(guò)點(diǎn)P作y軸的平行線與BC交于點(diǎn)Q,與OB交于點(diǎn)E,設(shè)P(x,x2-2x-3),易得,直線BC的解析式為y=x-3則Q點(diǎn)的坐標(biāo)為(x,x-3),再根據(jù)S四邊形OBPC=S△OBC+S△BPQ+S△CPQ即可得出結(jié)論.
(3)根據(jù)題意求得M的坐標(biāo),然后分三種情況討論求得即可.
解答 解:(1)由拋物線y=ax2+bx-2可知C的坐標(biāo)為(0,-2),
∴OC=2,
∵tan∠ABC=$\frac{OC}{OB}$=$\frac{2}{3}$
∴OB=3,
∴B(3,0),
∵A(-1,0),
把A、B的坐標(biāo)代入y=ax2+bx-2得:
$\left\{\begin{array}{l}{a-b-2=0}\\{9a+3b-2=0}\end{array}\right.$
解得$\left\{\begin{array}{l}{a=\frac{2}{3}}\\{b=-\frac{4}{3}}\end{array}\right.$,
∴拋物線的解折式為y=$\frac{2}{3}$x2-$\frac{4}{3}$x-2;
(2)過(guò)點(diǎn)P作y軸的平行線與BC交于點(diǎn)Q,與OB交于點(diǎn)E,
設(shè)P(x,$\frac{2}{3}$x2-$\frac{4}{3}$x-2),
設(shè)直線BC的解析式為y=kx+b(k≠0),
∵B(3,0),C(0,-2),
∴$\left\{\begin{array}{l}{3k+b=0}\\{b=-2}\end{array}\right.$,
解得$\left\{\begin{array}{l}{k=\frac{2}{3}}\\{b=-2}\end{array}\right.$,
∴直線BC的解析式為y=$\frac{2}{3}$x-2.
∴Q點(diǎn)的坐標(biāo)為(x,$\frac{2}{3}$x-2),
∴S四邊形OBPC=S△OBC+S△BPQ+S△CPQ
=$\frac{1}{2}$OB•OC+$\frac{1}{2}$QP•OE+$\frac{1}{2}$QP•EB
=$\frac{1}{2}$×3×2+$\frac{1}{2}$(2x-$\frac{2}{3}$x2)×3
=-x2+3x+3
=-(x-$\frac{3}{2}$)2+$\frac{3}{4}$,
∴當(dāng)x=$\frac{3}{2}$時(shí),四邊形ABPC的面積最大,最大面積為$\frac{3}{4}$.此時(shí)P點(diǎn)的坐標(biāo)為($\frac{3}{2}$,-$\frac{5}{2}$).
(3)設(shè)直線AM交y軸于D,
∵∠MBA=∠ABC,
∴OD=OC=2,
∴D(0,2),
設(shè)直線AM的解析式為y=mx+2,
代入B(3,0)得0=3m+2,解得m=-$\frac{2}{3}$,
∴直線AM的解析式為y=-$\frac{2}{3}$x+2,
解$\left\{\begin{array}{l}{y=-\frac{2}{3}x+2}\\{y=\frac{2}{3}{x}^{2}-\frac{4}{3}x-2}\end{array}\right.$得$\left\{\begin{array}{l}{x=-2}\\{y=\frac{10}{3}}\end{array}\right.$或$\left\{\begin{array}{l}{x=3}\\{y=0}\end{array}\right.$,
∴M(-2,$\frac{10}{3}$),
設(shè)N(x,$\frac{2}{3}$x-2),
∵BM2=(3+2)2+($\frac{10}{3}$)2,MN2=(x+2)2+($\frac{2}{3}$x-2-$\frac{10}{3}$)2,BN2=(x-3)2+($\frac{2}{3}$x-2)2,
當(dāng)MB=BN時(shí),N(-2,-$\frac{10}{3}$)或(8,$\frac{10}{3}$);
當(dāng)MB=MN時(shí),則(3+2)2+($\frac{10}{3}$)2=(x+2)2+($\frac{2}{3}$x-2-$\frac{10}{3}$)2,
整理得13x2-28x-33=0,
解得x1=3,x2=-$\frac{11}{13}$,
∴N(-$\frac{11}{13}$,-$\frac{100}{39}$);
當(dāng)BN=MN時(shí),(x+2)2+($\frac{2}{3}$x-2-$\frac{10}{3}$)2=(x-3)2+($\frac{2}{3}$x-2)2,
整理得10x=-35,
解得x=-$\frac{7}{2}$
∴N(-$\frac{7}{2}$,-$\frac{13}{3}$);
綜上,點(diǎn)N的坐標(biāo)為(-2,-$\frac{10}{3}$)或(8,$\frac{10}{3}$)或(-$\frac{11}{13}$,-$\frac{100}{39}$)或(-$\frac{7}{2}$,-$\frac{13}{3}$).
點(diǎn)評(píng) 本題考查的是二次函數(shù)綜合題,涉及到用待定系數(shù)法求二次函數(shù)及一次函數(shù)的解析式、三角形的面積公式等知識(shí),難度適中.本題考查了二次函數(shù)綜合題型.其中涉及到了待定系數(shù)法求二次函數(shù)、一次函數(shù)解析式,二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,相似三角形的判定與性質(zhì)以及等腰三角形的性質(zhì).注意,對(duì)于動(dòng)點(diǎn)問(wèn)題,需要分類討論
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 4 | C. | 4.5 | D. | 3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{1}{2}π$ | B. | -$\frac{1}{2}$ | C. | 4 | D. | 3 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com