【題目】把命題垂直于同一直線的兩直線互相平行寫成如果……,那么……”的形式是_____.它是___命題.(”)

【答案】 如果兩條直線垂直于同一條直線,那么這兩條直線互相平行

【解析】分析:根據(jù)命題的改寫法則進(jìn)行改寫即可得出答案.

詳解:如果兩條直線垂直于同一條直線,那么這兩條直線互相平行,它是假命題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】九年級(jí)(1)班的全體同學(xué)根據(jù)自己的興趣愛(ài)好參加了六個(gè)學(xué)生社團(tuán)(每個(gè)學(xué)生必須參加且只參加一個(gè)),為了了解學(xué)生參加社團(tuán)的情況,學(xué)生會(huì)對(duì)該班參加各個(gè)社團(tuán)的人數(shù)進(jìn)行了統(tǒng)計(jì),繪制成了如圖不完整的扇形統(tǒng)計(jì)圖,已知參加“讀書(shū)社”的學(xué)生有10人,請(qǐng)解答下列問(wèn)題:

(1)該班的學(xué)生共有 名;該班參加“愛(ài)心社”的人數(shù)為 名,若該班參加“吉他社”與“街舞社”的人數(shù)相同,則“吉他社”對(duì)應(yīng)扇形的圓心角的度數(shù)為 ;

(2)一班學(xué)生甲、乙、丙是“愛(ài)心社”的優(yōu)秀社員,現(xiàn)要從這三名學(xué)生中隨機(jī)選兩名學(xué)生參加“社區(qū)義工”活動(dòng),請(qǐng)你用畫(huà)樹(shù)狀圖或列表的方法求出恰好選中甲和乙的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用配方法解方程x2+8x+9=0,變形后的結(jié)果正確的是( 。

A. (x+4)2=﹣7 B. (x+4)2=﹣9 C. (x+4)2=7 D. (x+4)2=25

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC≌△DEF,∠A=40°,∠C=60°,則∠E=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】分解因式:3a3﹣12a=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】幾何模型:

條件:如圖,A、B是直線l同旁的兩個(gè)定點(diǎn).

問(wèn)題:在直線l上確定一點(diǎn)P,使PA+PB的值最小.

方法:作點(diǎn)A關(guān)于直線l的對(duì)稱點(diǎn)A′,連結(jié)A′B交l于點(diǎn)P,則PA+PB=A′B的值最。ú槐刈C明).

模型應(yīng)用:

(1)如圖1,正方形ABCD的邊長(zhǎng)為2,E為AB的中點(diǎn),P是AC上一動(dòng)點(diǎn).連結(jié)BD,由正方形對(duì)稱性可知,B與D關(guān)于直線AC對(duì)稱.連結(jié)ED交AC于P,則PB+PE的最小值是 ;

(2)如圖2,⊙O的半徑為2,點(diǎn)A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一動(dòng)點(diǎn),求PA+PC的最小值;

(3)如圖3,∠AOB=45°,P是∠AOB內(nèi)一點(diǎn),PO=10,Q、R分別是OA、OB上的動(dòng)點(diǎn),求△PQR周長(zhǎng)的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】命題:①對(duì)頂角相等;②垂直于同一條直線的兩條直線平行;③相等的角是對(duì)頂角;④同位角相等.其中錯(cuò)誤的有(

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將拋物線y=(x-1)2+3向左平移1個(gè)單位,得到的拋物線與y軸的交點(diǎn)的坐標(biāo)是____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】據(jù)甘肅省財(cái)政快報(bào)統(tǒng)計(jì),2014年全省財(cái)政收入672220000000元,67220000000用科學(xué)記數(shù)法表示為(  )

A. 6.722×109 B. 6.722×1010 C. 67.22×109 D. 67.22×1010

查看答案和解析>>

同步練習(xí)冊(cè)答案