如圖所示,正比例函數(shù)y=kx與反比例函數(shù)y=
m
x
的圖象交于點A(-3,2).
(1)試確定上述正比例函數(shù)與反比例函數(shù)的解析式;
(2)根據(jù)圖象回答,在第二象限內,當x取何值時,反比例函數(shù)的值大于正比例函數(shù)的值?
(3)P(m,n)是反比例函數(shù)圖象上的一動點,其中-3<m<0,過點P作直線PBx軸,交y軸于點B,過點A作直線ADy軸,交x軸于點D,交直線PB于點C.當四邊形OACP的面積為6時,請判斷線段BP與CP的大小關系,并說明理由.
(1)把A(-3,2)代入y=kx得:2=-3k,
解得:k=-
2
3
,
∴y=-
2
3
x,
代入y=
m
x
得:m=-6,
∴y=-
6
x
,
答:正比例函數(shù)與反比例函數(shù)的解析式分別是y=-
2
3
x,y=-
6
x


(2)∵A(-3,2),
由圖象可知:當-3<x<0時,在第二象限內,反比例函數(shù)的值大于正比例函數(shù)的值.

(3)答:線段BP與CP的大小關系是BP=CP,
理由是:∵P(m,n)在y=-
6
x
上,
∴mn=-6,
∵DO=3,AD=2,OB=n,BP=-m,CP=3-PB,DC=n,
四邊形OACP的面積為6,
∴S矩形CDOB-S△ADO-S△OBP=6,
3n-
1
2
×3×2-
1
2
×(-mn)=6,
3n-3-
1
2
×6=6,
3n=12,
解得:n=4,
∴m=-
6
4
=-
3
2

∴P(-
3
2
,4),
∴PB=
3
2
,CP=3-
3
2
=
3
2

∴BP=CP.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

直線y=-x+b與雙曲線y=
k
x
相交于點D(-4,1)、C(1,m),并分別與坐標軸交于A、B兩點,過點C作直線MN⊥x軸于F點,連接BF.
(1)求直線和雙曲線的解析式;
(2)求∠BCF的度數(shù);
(3)設直線MN上有一動點P,過P作直線PE⊥AB,垂足為E,直線PE與x軸相交于點H.當P點在直線MN上移動時,是否存在這樣的P點,使以A、P、H為頂點的三角形與△FBC相似?若存在,請求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,已知一次函數(shù)y=kx+b(k≠0)的圖象與x軸、y軸分別交于A、B兩點,且與反比例函數(shù)y=
m
x
(m≠0)的圖象在第一象限交于C點,CD垂直于x軸,垂足為D.若OA=OB=OD=1.
(1)求點A、B、D的坐標;
(2)求一次函數(shù)和反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知反比例函數(shù)y=
k
2x
的圖象過點(-2,-
1
2
)

(1)求此反比例函數(shù)的解析式;
(2)如圖,點A(m,1)是反比例函數(shù)圖象上的點,求m的值;
(3)利用(2)的結果,請問:在x軸上是否存在點P,使以A、O、P三點為頂點的三角形是直角三角形?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

一個圓臺形物體的上底面積是S1,下底面積是S2,如果如圖放在桌面上,對桌面的壓強是100帕,翻過來放,對桌面的壓強是400帕,則
S1
S2
的值為( 。
A.
1
16
B.
1
8
C.
1
4
D.
1
2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在平面直角坐標系中,O為坐標原點,P是反比例函數(shù)y=
6
x
(x>0)圖象上的任意一點,以P為圓心,PO為半徑的圓與x、y軸分別交于點A、B,則△AOB的面積是______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知矩形ABCD的邊BC在x軸上,矩形ABCD對角線的交點E的橫坐標為m(m>0),且點A、E和點N(1,2)都在函數(shù)y=
k
x
的圖象上.
(1)求k的值;
(2)求點A的坐標(用m表示);
(3)當滿足上述條件的矩形ABCD為正方形時,請求出此時m的值;
(4)點F在y軸的正半軸上,且OF=OB,在(3)的條件下,是否線段BC上存在點P,使PD=PF,若存在,求出符合條件的點P的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,D為反比例函數(shù)y=
k
x
(k<0)圖象上一點,過D作DC⊥y軸于C,DE⊥x軸于E,一次函數(shù)y=-x+m與y=-
3
3
x+2的圖象都過C點,與x軸分別交于A、B兩點.若梯形DCAE的面積為4,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知有一根長為10的鐵絲,折成了一個矩形框.則這個矩形相鄰兩邊a,b之間函數(shù)的圖象大致為(  )
A.B.C.D.

查看答案和解析>>

同步練習冊答案