【題目】如圖,已知, ,且,滿(mǎn)足,為第一象限內(nèi)一點(diǎn),連接,連接軸于點(diǎn),且

(1)、兩點(diǎn)的坐標(biāo);

(2)如圖①,若的面積為20,求點(diǎn)的坐標(biāo);

(3)如圖②,在第四象限內(nèi)過(guò)點(diǎn)軸,且,連接.求證:,

【答案】1)點(diǎn)A坐標(biāo)為(-4,0),點(diǎn)B的坐標(biāo)為(0,-4);(2)點(diǎn)D的坐標(biāo)為(4,2);(3)見(jiàn)解析

【解析】

1)根據(jù)平方和絕對(duì)值的非負(fù)性即可得出結(jié)論;

2)過(guò)點(diǎn)DDEy軸,利用AAS證出△DEC≌△AOC,從而得出DE=AO=4,SDEC=SAOC,然后根據(jù)已知面積即可求出OE的長(zhǎng),從而求出結(jié)論;

3)利用SAS證出△ABEBFD,從而得出,∠EAB=DBF,然后根據(jù)三角形外角的性質(zhì)和等量代換即可得出結(jié)論.

解:(1)∵,

解得:a=b=-4

∴點(diǎn)A坐標(biāo)為(-4,0),點(diǎn)B的坐標(biāo)為(0,-4

2)過(guò)點(diǎn)DDEy軸于E

∴∠DEC=AOC=90°

在△DEC和△AOC

∴△DEC≌△AOC

DE=AO=4SDEC=SAOC

的面積為20

SAOBSAOCSDCB=20

SAOBSDECSDCB=20

SAOBSDEB=20

OA·OBBE·DE=20

×4×4BE×4=20

解得:BE=6

OE=BEOB=2

∴點(diǎn)D的坐標(biāo)為(4,2

3)過(guò)點(diǎn)DDFx軸于F,連接BF,設(shè)BDAE交于點(diǎn)G

DFOC

AC=CD

AO=OF

OB垂直平分AF,DF=2OC

AB=BF

∴∠BAF=BFA

OA=OB,∠AOB=90°

∴∠BAF=OBA=45°

∴△ABF為等腰直角三角形,∠ABF=90°

∴∠ABE=135°,∠BFD=135°

∴∠ABE=BFD

BE=DF

在△ABE和△BFD

∴△ABEBFD

,∠EAB=DBF

∴∠BGE=EAB+∠GBA=DBF+∠GBA=ABF=90°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某村計(jì)劃建造如圖所示的矩形蔬菜溫室,要求長(zhǎng)與寬的比為21.在溫室內(nèi),沿前側(cè)內(nèi)墻保留3m寬的空地,其它三側(cè)內(nèi)墻各保留1m寬的通道.當(dāng)矩形溫室的長(zhǎng)與寬各為多少時(shí),蔬菜種植區(qū)域的面積是288m2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市計(jì)劃在十周年慶典當(dāng)天開(kāi)展購(gòu)物抽獎(jiǎng)活動(dòng),凡當(dāng)天在該超市購(gòu)物的顧客,均有一次抽獎(jiǎng)的機(jī)會(huì),抽獎(jiǎng)規(guī)則如下:將如圖所示的圓形轉(zhuǎn)盤(pán)平均分成四個(gè)扇形,分別標(biāo)上12,3,4四個(gè)數(shù)字,抽獎(jiǎng)?wù)哌B續(xù)轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)兩次,當(dāng)每次轉(zhuǎn)盤(pán)停止后指針?biāo)干刃蝺?nèi)的數(shù)為每次所得的數(shù)(若指針指在分界線(xiàn)時(shí)重轉(zhuǎn));當(dāng)兩次所得數(shù)字之和為8時(shí),返現(xiàn)金20元;當(dāng)兩次所得數(shù)字之和為7時(shí),返現(xiàn)金15元;當(dāng)兩次所得數(shù)字之和為6時(shí)返現(xiàn)金10元.

1)試用樹(shù)狀圖或列表的方法表示出一次抽獎(jiǎng)所有可能出現(xiàn)的結(jié)果;

2)某顧客參加一次抽獎(jiǎng),能獲得返還現(xiàn)金的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,tanA=,B=45°,AB=14. BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題:三角形的內(nèi)心是三角形內(nèi)切圓的圓心;三角形的外心是三角形三邊垂直平分線(xiàn)的交點(diǎn);平分弦的直徑垂直于這條弦;平面上任意三點(diǎn)確定一個(gè)圓圓內(nèi)接四邊形的對(duì)角互補(bǔ)其中,真命題有()

A. 兩個(gè) B. 三個(gè) C. 四個(gè) D. 五個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在下列的網(wǎng)格圖中.每個(gè)小正方形的邊長(zhǎng)均為1個(gè)單位,在RtABC中,∠C=90°,AC=3,BC=4.

(1)試在圖中作出ABCA為旋轉(zhuǎn)中心,沿順時(shí)針?lè)较蛐D(zhuǎn)90°后的圖形AB1C1

(2)若點(diǎn)B的坐標(biāo)為(-3,5),試在圖中畫(huà)出直角坐標(biāo)系,并標(biāo)出A、C兩點(diǎn)的坐標(biāo);

(3)根據(jù)(2)中的坐標(biāo)系作出與ABC關(guān)于原點(diǎn)對(duì)稱(chēng)的圖形A2B2C2,并標(biāo)出B2、C2兩點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)閱讀材料,并完成相應(yīng)的任務(wù).

阿波羅尼奧斯(約公元前262~190年),古希臘數(shù)學(xué)家,與歐幾里得、阿基米德齊名.他的著作《圓錐曲線(xiàn)論》是古代世界光輝的科學(xué)成果,可以說(shuō)是代表了希臘幾何的最高水平.阿波羅尼奧斯定理,是歐氏幾何的定理,表述三角形三邊和中線(xiàn)的長(zhǎng)度關(guān)系,即三角形任意兩邊的平方和等于第三邊的一半與該邊中線(xiàn)的平方和的2倍.

1)下面是該結(jié)論的部分證明過(guò)程,請(qǐng)?jiān)诳騼?nèi)將其補(bǔ)充完整;

已知:如圖1所示,在銳角中,為中線(xiàn)..

求證:

證明:過(guò)點(diǎn)于點(diǎn)

為中線(xiàn)

設(shè),

,

中,

中,__________

中,__________

__________

2)請(qǐng)直接利用阿波羅尼奧斯定理解決下面問(wèn)題:

如圖2,已知點(diǎn)為矩形內(nèi)任一點(diǎn),

求證:(提示:連接、交于點(diǎn),連接

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,四邊形ABCD是正方形,MAB延長(zhǎng)線(xiàn)上一點(diǎn).直角三角尺的一條直角邊經(jīng)過(guò)點(diǎn)D,且直角頂點(diǎn)EAB邊上滑動(dòng)(點(diǎn)E不與點(diǎn)A、B重合),另一直角邊與∠CBM的平分線(xiàn)BF相交于點(diǎn)F

1)如圖1,當(dāng)點(diǎn)EAB邊得中點(diǎn)位置時(shí):

通過(guò)測(cè)量DE、EF的長(zhǎng)度,猜想DEEF滿(mǎn)足的數(shù)量關(guān)系是

連接點(diǎn)EAD邊的中點(diǎn)N,猜想NEBF滿(mǎn)足的數(shù)量關(guān)系是 ,請(qǐng)證明你的猜想.

2)如圖2,當(dāng)點(diǎn)EAB邊上的任意位置時(shí),猜想此時(shí)DEEF有怎樣的數(shù)量關(guān)系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知⊙O的半徑為1,AC是⊙O的直徑,過(guò)點(diǎn)C作⊙O的切線(xiàn)BC,EBC的中點(diǎn),AB交⊙OD點(diǎn).

(1)直接寫(xiě)出EDEC的數(shù)量關(guān)系:_________;

(2)DE是⊙O的切線(xiàn)嗎?若是,給出證明;若不是,說(shuō)明理由;

(3)填空:當(dāng)BC=_______時(shí),四邊形AOED是平行四邊形,同時(shí)以點(diǎn)O、D、E、C為頂點(diǎn)的四邊形是_______.

查看答案和解析>>

同步練習(xí)冊(cè)答案