【題目】已知下列方程:①;②0.3x1;③;④x24x3;⑤x6;⑥x+2y0.其中一元一次方程的個(gè)數(shù)是(  )

A. 2B. 3C. 4D. 5

【答案】B

【解析】

只含有一個(gè)未知數(shù)(元),并且未知數(shù)的指數(shù)是1(次)的方程叫做一元一次方程.

解:①x2是分式方程,故①錯(cuò)誤;
0.3x=1,即0.3x-1=0,符合一元一次方程的定義.故②正確;
5x+1,即9x+2=0,符合一元一次方程的定義.故③正確;
x2-4x=3的未知數(shù)的最高次數(shù)是2,它屬于一元二次方程.故④錯(cuò)誤;
x=6,即x-6=0,符合一元一次方程的定義.故⑤正確;
x+2y=0中含有2個(gè)未知數(shù),屬于二元一次方程.故⑥錯(cuò)誤.
綜上所述,一元一次方程的個(gè)數(shù)是3個(gè).
故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市新城區(qū)環(huán)形路的拓寬改造工程項(xiàng)目,經(jīng)投標(biāo)決定由甲、乙兩個(gè)工程隊(duì)共同完成這一工程項(xiàng)目.已知乙隊(duì)單獨(dú)完成這項(xiàng)工程所需天數(shù)是甲隊(duì)單獨(dú)完成這項(xiàng)工程所需天數(shù)的2倍;該工程如果由甲隊(duì)先做6天,剩下的工程再由甲、乙兩隊(duì)合作16天可以完成.求甲、乙兩隊(duì)單獨(dú)完成這項(xiàng)工程各需要多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,經(jīng)過原點(diǎn)的拋物線y=﹣x2+2mx(m>0)與x軸的另一個(gè)交點(diǎn)為A.過點(diǎn)P(1,m)作直線PM⊥x軸于點(diǎn)M,交拋物線于點(diǎn)B.記點(diǎn)B關(guān)于拋物線對稱軸的對稱點(diǎn)為C(B、C不重合).連接CB,CP.

(1)當(dāng)m=3時(shí),求點(diǎn)A的坐標(biāo)及BC的長;
(2)當(dāng)m>1時(shí),連接CA,問m為何值時(shí)CA⊥CP?
(3)過點(diǎn)P作PE⊥PC且PE=PC,問是否存在m,使得點(diǎn)E落在坐標(biāo)軸上?若存在,求出所有滿足要求的m的值,并定出相對應(yīng)的點(diǎn)E坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某品牌轎車的耗油情況,將油箱加滿后進(jìn)行了耗油試驗(yàn),得到如表數(shù)據(jù):

轎車行駛的路程s(km)

0

100

200

300

400

油箱剩余油量Q(L)

50

42

34

26

18

(1)該轎車油箱的容量為______L,行駛150km時(shí),油箱剩余油量為______L;

(2)根據(jù)上表的數(shù)據(jù),寫出油箱剩余油量Q(L)與轎車行駛的路程s(km)之間的表達(dá)式;

(3)某人將油箱加滿后,駕駛該轎車從A地前往B地,到達(dá)B地時(shí)郵箱剩余油量為26L,求A,B兩地之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下列證明過程.

如圖,已知AB∥DE,AB=DE,D,C在AF上,且AD=CF,求證:△ABC≌△DEF.

證明:∵AB∥DE

∴∠_____=∠____________

∵AD=CF

∴AD+DC=CF+DC即_____

在△ABC和△DEF中AB=DE_____

∴△ABC≌△DEF_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠ACB=90°,以AC為邊在△ABC外作等邊三角形ACD,過點(diǎn)D作AC的垂線,垂足為F,與AB相交于點(diǎn)E,連接CE.

(1)說明:AE=CE=BE;

(2)若AB=15cm,P是直線DE上的一點(diǎn).則當(dāng)P在何處時(shí),PB+PC最小,并求出此時(shí)PB+PC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,DBC邊上的中點(diǎn),∠BDE=∠CDF,請你添加一個(gè)條件,使DE=DF成立.你添加的條件是 (不再添加輔助線和字母)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,CD⊥BC,BD與AC相交于點(diǎn)E,AB=9,BC=4,DC=3.

(1)求BE的長度;
(2)求△ABE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖甲,點(diǎn)C將線段AB分成兩部分(AC>BC),如果 = ,那么稱點(diǎn)C為線段AB的黃金分割點(diǎn).某數(shù)學(xué)興趣小組在進(jìn)行課題研究時(shí),由黃金分割點(diǎn)聯(lián)想到“黃金分割線”,類似地給出“黃金分割線”的定義:直線l將一個(gè)面積為S的圖形分成面積分別為S1 , S2(S1>S2)的兩部分,如果 = ,那么稱直線l為該圖形的黃金分割線.

(1)如圖乙,在△ABC中,∠A=36°,AB=AC,∠ACB的平分線交AB于點(diǎn)D,請問點(diǎn)D是否是AB邊上的黃金分割點(diǎn),并證明你的結(jié)論;
(2)若△ABC在(1)的條件下,如圖丙,請問直線CD是不是△ABC的黃金分割線,并證明你的結(jié)論;
(3)如圖丁,在Rt△ABC中,∠ACB=90°,D為斜邊AB上的一點(diǎn),(不與A,B重合)過D作DE⊥BC于點(diǎn)E,連接AE,CD相交于點(diǎn)F,連接BF并延長,與DE,AC分別交于點(diǎn)G,H.請問直線BH是直角三角形ABC的黃金分割線嗎?并說明理由.

查看答案和解析>>

同步練習(xí)冊答案