25、如圖所示,在平面直角坐標(biāo)系中表示下面各點(diǎn):A(0,3),B(1,-3),C(3,-5),D(-3,-5),E(3,5),F(xiàn)(5,7),G(5,0).

(1)A點(diǎn)到原點(diǎn)O的距離是
3
;
(2)將點(diǎn)C向x軸的負(fù)方向平移6個(gè)單位,它與點(diǎn)
D
重合;
(3)連接CE,則直線CE與y軸是什么關(guān)系?
(4)點(diǎn)F分別到x、y軸的距離是多少?
分析:(1)y軸上的點(diǎn)到原點(diǎn)O的距離是這個(gè)點(diǎn)的縱坐標(biāo)的絕對(duì)值;
(2)讓點(diǎn)C的橫坐標(biāo)減6,看與哪個(gè)點(diǎn)的坐標(biāo)相同;
(3)C,E的橫坐標(biāo)相同;
(4)點(diǎn)F分別到x、y軸的距離是點(diǎn)F的縱,橫坐標(biāo)的絕對(duì)值.
解答:解:在圖所示的平面直角坐標(biāo)系中表示下面各點(diǎn)
A(0,3),B(1,-3),C(3,-5)
,D(-3,-5),E(3,5),F(xiàn)(5,7).(1分)

(1)A點(diǎn)到原點(diǎn)O的距是3.(1分)

(2)將點(diǎn)C向x軸的負(fù)方向平移6個(gè)單位,它與點(diǎn)D重合.(1分)

(3)連接CE,則直線CE與y軸是什么關(guān)系?
答:CE與y軸平行.(1分)

(4)點(diǎn)F分別到x、y軸的距離是多少?
答:點(diǎn)F到x軸的距離是7;點(diǎn)F到y(tǒng)軸的距離是5(1分)
點(diǎn)評(píng):用到的知識(shí)點(diǎn)是:左右平移時(shí)只動(dòng)橫坐標(biāo);過(guò)橫坐標(biāo)相同的兩個(gè)點(diǎn)的直線和y軸平行.點(diǎn)到x軸的距離應(yīng)是這點(diǎn)的縱坐標(biāo)的絕對(duì)值.點(diǎn)到y(tǒng)軸的距離應(yīng)是這點(diǎn)的橫坐標(biāo)的絕對(duì)值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+1的圖象與反比例函數(shù)y=
9x
的圖象在第一象限相精英家教網(wǎng)交于點(diǎn)A,過(guò)點(diǎn)A分別作x軸、y軸的垂線,垂足為點(diǎn)B、C.如果四邊形OBAC是正方形,求一次函數(shù)的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

5、如圖所示,在平面直角坐標(biāo)系中,點(diǎn)A、B的坐標(biāo)分別為(-2,0)和(2,0).月牙①繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到月牙②,則點(diǎn)A的對(duì)應(yīng)點(diǎn)A′的坐標(biāo)為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,在平面直角坐標(biāo)系中,一顆棋子從點(diǎn)P處開(kāi)始依次關(guān)于點(diǎn)A,B,C作循環(huán)對(duì)稱跳動(dòng),即第一次從點(diǎn)P跳到關(guān)于點(diǎn)A的對(duì)稱點(diǎn)M處,第二次從點(diǎn)M跳到關(guān)于點(diǎn)B的對(duì)稱點(diǎn)N處,第三次從點(diǎn)N跳到關(guān)于點(diǎn)C的對(duì)稱點(diǎn)處,…如此下去.
(1)在圖中標(biāo)出點(diǎn)M,N的位置,并分別寫(xiě)出點(diǎn)M,N的坐標(biāo):
 

(2)請(qǐng)你依次連接M、N和第三次跳后的點(diǎn),組成一個(gè)封閉的圖形,并計(jì)算這個(gè)圖形的面積;
(3)猜想一下,經(jīng)過(guò)第2009次跳動(dòng)之后,棋子將落到什么位置.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,在平面直角坐標(biāo)系xoy中,有一組對(duì)角線長(zhǎng)分別為1,2,3的正方形A1B1C1O、A2B2C2B1、A3B3C3B2,其對(duì)角線OB1、B1B2、B2 B3依次放置在y軸上(相鄰頂點(diǎn)重合),依上述排列方式,對(duì)角線長(zhǎng)為n的第n個(gè)正方形的頂點(diǎn)An的坐標(biāo)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+3(a≠0)經(jīng)過(guò)A(-1,0)、B(3,0)兩點(diǎn),拋物線與y軸交點(diǎn)為C,其頂點(diǎn)為D,連接BD,點(diǎn)P是線段BD上一個(gè)動(dòng)點(diǎn)(不與B、D重合),過(guò)點(diǎn)P作y軸的垂線,垂足為E,連接精英家教網(wǎng)BE.
(1)求拋物線的解析式,并寫(xiě)出頂點(diǎn)D的坐標(biāo);
(2)如果P點(diǎn)的坐標(biāo)為(x,y),△PBE的面積為s,求s與x的函數(shù)關(guān)系式,寫(xiě)出自變量x的取值范圍,并求出s的最大值;
(3)在(2)的條件下,當(dāng)s取得最大值時(shí),過(guò)點(diǎn)P作x的垂線,垂足為F,連接EF,把△PEF沿直線EF折疊,點(diǎn)P的對(duì)應(yīng)點(diǎn)為P',請(qǐng)直接寫(xiě)出P'點(diǎn)坐標(biāo),并判斷點(diǎn)P'是否在該拋物線上.

查看答案和解析>>

同步練習(xí)冊(cè)答案