【題目】如圖,在平面直角坐標(biāo)系xOy中,△ABC頂點的橫、縱坐標(biāo)都是整數(shù).若將△ABC以某點為旋轉(zhuǎn)中心,順時針旋轉(zhuǎn)90°得到△DEF,則旋轉(zhuǎn)中心的坐標(biāo)是( )
A.(0,0)
B.(1,0)
C.(1,﹣1)
D.(2.5,0.5)
【答案】C
【解析】解:∵將△ABC以某點為旋轉(zhuǎn)中心,順時針旋轉(zhuǎn)90°得到△DEF,
∴點A的對應(yīng)點為點D,點B的對應(yīng)點為點E,
作線段AD和BE的垂直平分線,它們的交點為P(1,﹣1),
∴旋轉(zhuǎn)中心的坐標(biāo)為(1,﹣1).
故選C.
先根據(jù)旋轉(zhuǎn)的性質(zhì)得到點A的對應(yīng)點為點D,點B的對應(yīng)點為點E,再根據(jù)旋轉(zhuǎn)的性質(zhì)得到旋轉(zhuǎn)中心在線段AD的垂直平分線,也在線段BE的垂直平分線,即兩垂直平分線的交點為旋轉(zhuǎn)中心,而易得線段BE的垂直平分線為直線x=1,線段AD的垂直平分線為以AD為對角線的正方形的另一條對角線所在的直線.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點M、N分別是正五邊形ABCDE的邊BC、CD上的點,且BM=CN,AM交BN于點P.
(1)求證:△ABM≌△BCN;
(2)求∠APN的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c交x軸于點A(﹣3,0)和點B,交y軸于點C(0,3).
(1)求拋物線的函數(shù)表達(dá)式;
(2)若點P在拋物線上,且S△AOP=4SBOC , 求點P的坐標(biāo);
(3)如圖b,設(shè)點Q是線段AC上的一動點,作DQ⊥x軸,交拋物線于點D,求線段DQ長度的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1)在△ABC中,∠C=90°,AB=25cm,BC=15cm,若動點P從點C開始沿著C→B→A→C的路徑運動,且速度為每秒5cm,設(shè)點P運動的時間為t秒.
(1)點P運動2秒后,求△ABP的面積;
(2)如圖(2),當(dāng)t為何值時,BP平分∠ABC;
(3)當(dāng)△BCP為等腰三角形時,直接寫出所有滿足條件t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣x+3與x軸、y軸分別交于點B、點C,經(jīng)過B、C兩點的拋物線y=x2+bx+c與x軸的另一個交點為A,頂點為P.
(1)求該拋物線的解析式;
(2)連接AC,在x軸上是否存在點Q,使以P、B、Q為頂點的三角形與△ABC相似?若存在,請求出點Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,AC交⊙O于E點,BC交⊙O于D點,CD=BD,∠C=70°.現(xiàn)給出以下四種結(jié)論:①∠A=45°;②AC=AB;③AE=BE;④CEAB=2BD2 . 其中正確結(jié)論的序號是( )
A.①②
B.②③
C.②④
D.③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,以AB為直徑的圓O經(jīng)過點D,E是⊙O上一點,且∠AED=45°.
(1)判斷CD與⊙O的位置關(guān)系,并說明理由;
(2)若⊙O半徑為6cm,AE=10cm,求∠ADE的正弦值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】濟(jì)寧市“五城同創(chuàng)”活動中,一項綠化工程由甲、乙兩工程隊承擔(dān).已知甲工程隊單獨完成這項工作需120天,甲工程隊單獨工作30天后,乙工程隊參與合做,兩隊又共同工作了36天完成.
(1)求乙工程隊單獨完成這項工作需要多少天?
(2)因工期的需要,將此項工程分成兩部分,甲做其中一部分用了x天完成,乙做另一部分用了y天完成,其中x、y均為正整數(shù),且x<46,y<52,求甲、乙兩隊各做了多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校八年級一班20名女生某次體育測試的成績統(tǒng)計如下:
成績(分) | 60 | 70 | 80 | 90 | 100 |
人數(shù)(人) | 1 | 5 | x | y | 2 |
(1)如果這20名女生體育成績的平均分?jǐn)?shù)是82分,求x、y的值;
(2)在(1)的條件下,設(shè)20名學(xué)生測試成績的眾數(shù)是a,中位數(shù)是b,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com