【題目】在數(shù)學(xué)課上,老師提出如下問題:

已知:∠α,直線ll上兩點(diǎn)A,B

求作:RtABC,使點(diǎn)C在直線l的上方,且∠ABC=90°,∠BAC=α

小剛的做法如下:

①以∠α的頂點(diǎn)O為圓心,任意長為半徑作弧,交兩邊于M,N;以A為圓心,同樣長為半徑作弧,交直線l于點(diǎn)P

②以P為圓心,MN的長為半徑作弧,兩弧交于點(diǎn)Q,作射線AQ

③以B為圓心,任意長為半徑作弧,交直線lEF;

④分別以EF為圓心,大于長為半徑作弧,兩弧在直線l上方交于點(diǎn)G,作射線BG;

⑤射線AQ與射線BG交于點(diǎn)CRtABC即為所求.

1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)

2)完成下面的證明:

連接PQ

在△OMN和△AQP中,

ON=AP,PQ=NM,OM=AQ

∴△OMN ≌△AQP__________)(填寫推理依據(jù))

∴∠PAQ=O=α

CE=CF,BE=BF

CBEF____________________________)(填寫推理依據(jù))

【答案】1)見解析;(2)邊邊邊或SSS,三線合一

【解析】

1)根據(jù)題目給出的步驟進(jìn)行尺規(guī)作圖即可得出答案,其中步驟①②是尺規(guī)作一個(gè)角等于已知角,步驟③④是尺規(guī)作圖作垂線,可得出直角;

2)根據(jù)題目條件,可知在△OMN和△AQP中,對應(yīng)邊相等,則是利用了SSS證明三角形全等,然后再利用圓規(guī)作圖可知△CEF是等腰三角形,根據(jù)等腰三角形底邊三線合一即可證出CBEF

1)作圖:如圖

2)(邊邊邊或SSS);(三線合一

解:根據(jù)步驟①用圓規(guī)畫圖,圓的半徑相等,可知ON=AP, OM=AQ,根據(jù)步驟②可知PQ=NM,即直接利用SSS證明△OMN ≌△AQP全等,即第一個(gè)括號(hào)答案可寫“邊邊邊或SSS”;

根據(jù)步驟③用圓規(guī)畫圖,圓的半徑相等,可知BE=BF,根據(jù)步驟④可知CE=CF,即可得出△CEF是等腰三角形,且底邊上BEF的中點(diǎn),則可根據(jù)等腰三角形底邊上三線合一即可證出CBEF ,則第二個(gè)括號(hào)答案可寫“三線合一”.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,函數(shù)的圖象經(jīng)過點(diǎn),直線軸交于點(diǎn)

1)求的值及點(diǎn)的坐標(biāo);

2)直線與函數(shù)的圖象交于點(diǎn),記圖象在點(diǎn),之間的部分與線段,圍成的區(qū)域(不含邊界)為

①當(dāng)時(shí),直接寫出區(qū)域內(nèi)的整點(diǎn)個(gè)數(shù);

②若區(qū)域內(nèi)恰有2個(gè)整點(diǎn),結(jié)合函數(shù)圖象,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,點(diǎn)D為邊BC的中點(diǎn),點(diǎn)EABC內(nèi),AE平分∠BAC,CEAE點(diǎn)FAB上,且BF=DE

1)求證:四邊形BDEF是平行四邊形

2)線段ABBF,AC之間具有怎樣的數(shù)量關(guān)系?證明你所得到的結(jié)論

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)E是矩形ABCD的邊CD上一點(diǎn),把ADE沿AE對折,點(diǎn)D的對稱點(diǎn)F恰好落在BC上,已知折痕AE=cm,且tanEFC=,那么該矩形的周長為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),直線與拋物線交于兩點(diǎn),其中點(diǎn)的橫坐標(biāo)為2

1)求A,B兩點(diǎn)的坐標(biāo)及直線AC的表達(dá)式;

2P是線段AC上一動(dòng)點(diǎn)(PAC不重合),過點(diǎn)P軸的平行線交拋物線于點(diǎn)E,求面積的最大值;

3)點(diǎn)H是拋物線上一動(dòng)點(diǎn),在軸上是否存在點(diǎn)F,使得四個(gè)點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?如果存在請直接寫出所有滿足條件的點(diǎn)F坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是以O為圓心,AB長為直徑的半圓弧,點(diǎn)CAB上一定點(diǎn).點(diǎn)P上一動(dòng)點(diǎn),連接PAPC,過點(diǎn)PPDABD已知AB=6cm,設(shè)A、P兩點(diǎn)間的距離為x cmP、C兩點(diǎn)間的距離為y1 cm,P、D兩點(diǎn)間的距離為y2 cm

小剛根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),分別對函數(shù)y1y2隨自變量x變化而變化的規(guī)律進(jìn)行了探究.下面是小剛的探究過程,請將它補(bǔ)充完整:

1)按照下表中自變量x的值進(jìn)行取點(diǎn)、畫圖、測量,分別得到y1y2x的幾組對應(yīng)值:

x/cm

0

1

2

3

4

5

6

y1/cm

4.00

3.96

m

3.61

3.27

2.77

2.00

y2/cm

0.00

0.99

1.89

2.60

2.98

2.77

0.00

經(jīng)測量,m的值是 ;(保留一位小數(shù))

2)在同一平面直角坐標(biāo)系xOy中,描出補(bǔ)全后的表中各組數(shù)值所對應(yīng)的點(diǎn)(x,y1),點(diǎn)(x,y2),并畫出函數(shù)y1 y2的圖象;

3)結(jié)合函數(shù)圖象,回答問題:△APC為等腰三角形時(shí),AP的長度約為 cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是某區(qū)1500名小學(xué)生和初中生的視力情況和他們每節(jié)課課間戶外活動(dòng)平均時(shí)長的統(tǒng)計(jì)圖.

1)根據(jù)圖1,計(jì)算該區(qū)1500名學(xué)生的近視率;

2)根據(jù)圖2,從兩個(gè)不同的角度描述該區(qū)1500名學(xué)生各年級(jí)近視率的變化趨勢;

3)根據(jù)圖1、圖2、圖3,描述該區(qū)1500名學(xué)生近視率和所在學(xué)段(小學(xué)、初中)、每節(jié)課課間戶外活動(dòng)平均時(shí)長的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在中,,,,以為直徑的半圓按如圖所示位置擺放,點(diǎn)與點(diǎn)重合,點(diǎn)在邊的中點(diǎn)處,點(diǎn)從現(xiàn)在的位置出發(fā)沿方向以每秒2個(gè)單位長度的速度運(yùn)動(dòng),點(diǎn)隨之沿下滑,并帶動(dòng)半圓在平面內(nèi)滑動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒(),點(diǎn)運(yùn)動(dòng)到點(diǎn)處停止,點(diǎn)為半圓中點(diǎn).

1)如圖2,當(dāng)點(diǎn)與點(diǎn)重合時(shí),連接交邊,則____________;

2)如圖3,當(dāng)半圓的圓心落在了的斜邊的中線時(shí),求此時(shí)的,并求出此時(shí)的面積;

3)在整個(gè)運(yùn)動(dòng)的過程中,當(dāng)半圓與邊有兩個(gè)公共點(diǎn)時(shí),求出的取值范圍;

4)請直接寫出在整個(gè)運(yùn)動(dòng)過程中點(diǎn)的運(yùn)動(dòng)路徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一艘輪船向正東方向航行,在A處測得燈塔PA的北偏東60°方向,航行40海里到達(dá)B處,此時(shí)測得燈塔PB的北偏東15°方向.

(1)求燈塔P到輪船航線的距離PD;(結(jié)果保留根號(hào))

(2)當(dāng)輪船從B處繼續(xù)向東航行時(shí),一艘快艇從燈塔P處同時(shí)前往D處,盡管快艇速度是輪船速度的2倍,但快艇還是比輪船晚15分鐘到達(dá)D處,求輪船每小時(shí)航行多少海里.(結(jié)果精確到1海里,參考數(shù)據(jù)≈1.7)

查看答案和解析>>

同步練習(xí)冊答案