【題目】如圖,某日在我國某島附近海域有兩艘自西向東航行的海監(jiān)船A、B,船在A船的正東方向,且兩船保持20海里的距離,某一時刻兩海監(jiān)船同時測得在A的東北方向,的北偏東15°方向有一我國漁政執(zhí)法船C,求此時船C與船B的距離是多少.(結果保留小數(shù)點后一位)
參考數(shù)據(jù): ≈1.414, ≈1.732, ≈2.236.

【答案】解:解:過點B作BD⊥AC于點D,

由題意可知:∠BAC=45°,∠ABC=90°+15°=105°,

則∠ACB=180°﹣∠BAC﹣∠ABC=30°,

在Rt△ABD中,BD=ABsin∠BAD=20× =10 ,

在Rt△BCD中,BC= =20

答:此時船C與船B的距離是20 海里.


【解析】抓住已知某一時刻兩海監(jiān)船同時測得在A的東北方向,即可添加輔助線過點B作BD⊥AC于點D,得到Rt△BDC和等腰Rt△ABD,根據(jù)AB的長,就可求出BD的長,然后在Rt△BCD中,利用解直角三角形就可求出CB的長。
【考點精析】認真審題,首先需要了解解直角三角形(解直角三角形的依據(jù):①邊的關系a2+b2=c2;②角的關系:A+B=90°;③邊角關系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法)),還要掌握關于方向角問題(指北或指南方向線與目標方向 線所成的小于90°的水平角,叫做方向角)的相關知識才是答題的關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】ABC在平面直角坐標系xOy中的位置如圖所示.

1)作ABC關于點C成中心對稱的A1B1C1

2)將A1B1C1向右平移4個單位,作出平移后的A2B2C2

3)在x軸上求作一點P,使PA1+PC2的值最小,并寫出點P的坐標(不寫解答過程,直接寫出結果)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)過點CAB的平行線CD

(2)過點CAB的垂線,垂足為E

(3)線段CE的長度是點C到直線__________的距離;

(4)連接CA、CB,在線段CA、CB、CE中,線段__________最短,理由:______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,AC=BCCHABC斜邊上的中線,點FCH上一點,連接BF并延長交AC于點D,過點AAEAC,連接CEDE,若∠ACE=2ABF,CE=13,CD=8,則CDE的面積為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明的盒子中,共有“一白三黑”四個圍棋子,其除顏色外無其他區(qū)別.
(1)隨機地從盒子中取出1子,則提出的是白子的概率是多少?
(2)隨機地從盒子中取出1子,不放回再取出第二子,請用畫樹狀或列表的方式表示出所有可能的結果,并求出恰好取出“一黑一白”的概率是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在平面直角坐標系中,四邊形ABCD是直角梯形,BC∥AD,∠BAD=90°,BC與y軸相交于點M,且M是BC的中點,A,B,D三點的坐標分別是A(﹣1,0),B(﹣l,2),D(3,0).連接DM,并把線段DM沿DA方向平移到ON.若拋物線y=ax2+bx+c經(jīng)過點D,M,N.

(1)求拋物線的解析式.
(2)拋物線上是否存在點P,使得PA=PC?若存在,求出點P的坐標;若不存在,請說明理由.
(3)設拋物線與x軸的另一個交點為E,點Q是拋物線的對稱軸上的一個動點,當點Q在什么位置時有|QE﹣QC|最大?并求出最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題情境:如圖1,,.求 度數(shù).

小明的思路是:如圖2,過 ,通過平行線性質,可得

問題遷移:

1)如圖3,點 在射線 上運動,當點 、 兩點之間運動時,, 、 、 之間有何數(shù)量關系?請說明理由;

2)在(1)的條件下,如果點 、 兩點外側運動時(點 與點 、 、 三點不重合),請你直接寫出 、 、 間的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,E,F(xiàn)分別是邊CD,DA上的點,且CE=DF,AE與BF交于點M.求證:AE⊥BF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,四邊形中,

1)動點出發(fā),以每秒1個單位的速度沿路線運動到點停止,設運動時間為,的面積為關于的函數(shù)圖象如圖②所示,求的長.

2)如圖③動點從點出發(fā),以每秒2個單位的速度沿路線運動到點停止,同時,動點從點出發(fā),以每秒5個單位的速度沿路線運動到點停止,設運動時間為,當點運動到邊上時,連接,當的面積為8時,求的值.

查看答案和解析>>

同步練習冊答案