如果一條直線把一個平面圖形的面積分成相等的兩部分,我們把這條直線稱為這個平面圖形的一條面積等分線.如:平行四邊形的一條對線所在的直線就是平行四邊形的一條面積等分線.
(1)三角形的中線、高線、角平分線分別所在的直線一定是三角形的面積等分線的有___;
(2)如圖1,梯形ABCD中,AB∥DC,如果延長DC到E,使CE=AB,連接AE,那么有S梯形ABCD=S△ADE.請你給出這個結(jié)論成立的理由,并過點(diǎn)A作出梯形ABCD的面積等分線(不寫作法,保留作圖痕跡);
(3)如圖,四邊形ABCD中,AB與CD不平行,S△ADC>S△ABC,過點(diǎn)A能否作出四邊形ABCD的面積等分線?若能,請畫出面積等分線,并給出證明;若不能,說明理由.
(1)略
(2)略
(3)能
【解析】(1)中線所在的直線.
(2)法一:連接BE,∵AB∥CE,AB=CE,∴四邊形ABEC為平行四邊形.∴BE∥AC,
∴△ABC和△AEC的公共邊AC上的高也相等,∴S△ABC=S△AEC .
∴S梯形ABCD=S△ACD+S△ABC=S△ACD+S△AEC=S△AED .
法二:設(shè)AE與BC相交于點(diǎn)F.∵AB∥CE,∴∠ABF=∠ECF,∠BAF=∠CEF.
又∵AB=CE,∴△ABF≌△ECF.∴S梯形ABCD=S四邊形AFCD+S△ABF=S四邊形AFCD+S△ECF=S△AED .
過點(diǎn)A的梯形ABCD的面積等分線的畫法如圖①所示.
(3)能.連接AC,過點(diǎn)B作BE∥AC交DC的延長線于點(diǎn)E,連接AE.
∵BE∥AC,∴△ABC和△AEC的公共邊AC上的高也相等,∴S△ABC=S△AEC .
∴S梯形ABCD=S△ACD+S△ABC=S△ACD+S△AEC=S△AED .
∵S△ACD>S△ABC ,∴面積等分線必與CD相交,取DE中點(diǎn)F,則直線AF即為要求作的四邊形ABCD的面積等分線.作圖如圖②所示.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:閱讀理解
1 |
2 |
1 |
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013年山東省青島市中考數(shù)學(xué)模擬試卷(八)(解析版) 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013年山東省青島市中考數(shù)學(xué)模擬試卷(四)(解析版) 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2007年江蘇省泰州市泰興市橫垛初中中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com