如圖,△ABC中,∠BAC=60°,∠ABC=45°,AB=,D是線段BC上的一個動點,以AD為直徑畫⊙O分別交AB、AC于E、F,連接EF,則線段EF長度的最小值為.
科目:初中數(shù)學 來源: 題型:
若點(2,6)是反比例函數(shù)y=圖象上一點,則此函數(shù)圖象必經(jīng)過點( )
A.(3,4) B.(3,﹣4) C.(﹣4,3) D.(4,﹣3)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
△ABC與△A′B′C′是位似圖形,且△ABC與△A′B′C′的位似比是1:2,已知△ABC的面積是3,則△A′B′C′的面積是( )
A.3 B.6 C.9 D.12
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
閱讀材料:
例:說明代數(shù)式+ 的幾何意義,并求它的最小值.
解:+=+,如圖,建立平面直角坐標系,點P(x,0)是x軸上一點,則可以看成點P與點A(0,1)的距離,可以看成點P與點B(3,2)的距離,所以原代數(shù)式的值可以看成線段PA與PB長度之和,它的最小值就是PA+PB的最小值.
設(shè)點A關(guān)于x軸的對稱點為A′,則PA=PA′,因此,求PA+PB的最小值,只需求PA′+PB的最小值,而點A′、B間的直線段距離最短,所以PA′+PB的最小值為線段A′B的長度.為此,構(gòu)造直角三角形A′CB,因為A′C=3,CB=3,所以A′B=3,即原式的最小值為3.
根據(jù)以上閱讀材料,解答下列問題:
(1)代數(shù)式+的值可以看成平面直角坐標系中點P(x,0)與點A(1,1)、點B(2,3)或(2,﹣3)的距離之和.(填寫點B的坐標)
(2)代數(shù)式+的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
關(guān)于x的方程a(x+m)2+b=0的解是x1=﹣2,x2=1,(a,m,b均為常數(shù),a≠0),則方程a(x+m+2)2+b=0的解是
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
用配方法解一元二次方程x2﹣4x=5時,此方程可變形為( )
A. (x+2)2=1 B. (x﹣2)2=1 C. (x+2)2=9 D. (x﹣2)2=9
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com