【題目】如圖,在矩形ABCD中,E、F分別是邊AB、CD上的點,AE=CF,連接EF、BF,EF與對角線AC交于點O,且BE=BF,∠BEF=2∠BAC.
(1)求證:OE=OF;
(2)求∠ACB的度數(shù).
【答案】(1)證明見解析(2)60°
【解析】(1)根據(jù)矩形的對邊平行可得AB∥CD,再根據(jù)兩直線平行,內錯角相等求出∠BAC=∠FCO,然后利用“角角邊”證明△AOE和△COF全等,再根據(jù)全等三角形的即可得證;
(2)連接OB,根據(jù)等腰三角形三線合一的性質可得BO⊥EF,再根據(jù)矩形的性質可得OA=OB,根據(jù)等邊對等角的性質可得∠BAC=∠ABO,再根據(jù)三角形的內角和定理列式求出∠ABO=30°,即∠BAC=30°,繼而求得答案.
(1)∵四邊形ABCD是矩形,
∴AB∥CD,
∴∠OCF=∠OAE,
在△OCF和△OAE中,
∴△COF≌△AOE(AAS),
∴OE=OF;
(2)如圖,連接OB,
∵BE=BF,OE=OF,
∴BO⊥EF,
∴在Rt△BEO中,∠BEF+∠ABO=90°,
由直角三角形斜邊上的中線等于斜邊上的一半可知:OA=OB=OC,
∴∠BAC=∠ABO,
又∵∠BEF=2∠BAC,
即2∠BAC+∠BAC=90°,
解得∠BAC=∠ABO=30°,
∴∠ACB=90°-∠BAC=60°.
科目:初中數(shù)學 來源: 題型:
【題目】解方程:
(1)x2﹣2x﹣8=0;
(2)3x(x﹣1)=2(x﹣1);
(3)x2+3=3(x+1);
(4)2x(4x+5)=7;
(5)4x2﹣8x+1=0;
(6)(y+2)2=(3y﹣1)2 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O上有兩點A與P,且OA⊥OP,若A點固定不動,P點在圓上勻速運動一周,那么弦AP的長度d與時間t的函數(shù)關系的圖象可能是( )
A.①
B.③
C.①或③
D.②或④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,在數(shù)軸上點A表示數(shù)a,點B表示數(shù)b,且a,b滿足.
(1)點A表示的數(shù)為________,點B表示的數(shù)為________;
(2)設點A與點C之間的距離表示為AC,點B與點C之間的距離表示為BC.若在數(shù)軸上存在一點C,使BC=2AC,則點C表示的數(shù)為__________;
(3)若在原點處放一擋板,一小球甲從點A處以每秒2個單位長度的速度向左運動;同時另一小球乙從點B以每秒2個單位長度的速度也向左運動,在碰到擋板后(忽略球的大小,可看做一點)以原來速度的兩倍向相反的方向運動.設運動的時間為t秒,請用含t的代數(shù)式分別表示出甲、乙兩小球到原點的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若兩個二次函數(shù)圖象的頂點、開口方向都相同,則稱這兩個二次函數(shù)為“同簇二次函數(shù)”.
(1)請寫出兩個為“同簇二次函數(shù)”的函數(shù);
(2)已知關于x的二次函數(shù)y1=2x2﹣4mx+2m2+1和y2=ax2+bx+5,其中y1的圖象經(jīng)過點A(1,1),若y1+y2與y1為“同簇二次函數(shù)”,求函數(shù)y2的表達式,并求出當0≤x≤3時,y2的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O的直徑AB=4,∠ABC=30°,BC交⊙O于D,D是BC的中點.
(1)求BC的長;
(2)過點D作DE⊥AC,垂足為E,求證:直線DE是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,點F為弦AC的中點,連接OF并延長交⊙O于點D,過點D作⊙O的切線,交BA的延長線于點E.
(1)求證:AC∥DE;
(2)若OA=AE=4,求AC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某射擊隊教練為了了解隊員訓練情況,從隊員中選取甲、乙兩名隊員進行射擊測試,相同條件下各射靶5次,成績統(tǒng)計如下:
(1)根據(jù)上述信息可知:甲命中環(huán)數(shù)的中位數(shù)是 環(huán),乙命中環(huán)數(shù)的眾數(shù)是 環(huán);
(2)試通過計算說明甲、乙兩人的成績誰比較穩(wěn)定?
(3)如果乙再射擊1次,命中8環(huán),那么乙射擊成績的方差會 .(填 “變大”、“變小” 或 “不變”)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一次函數(shù)y=kx+b的圖象經(jīng)過點A(0,2)和點B(-a,3),且點B在正比例函數(shù)y=-3x的圖象上.
(1)求a的值;
(2)求一次函數(shù)的解析式并畫出它的圖象;
(3)若P(m,y1),Q(m-1,y2)是這個一次函數(shù)圖象上的兩點,試比較y1與y2的大。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com