【題目】某地區(qū)100個(gè)家庭收入按從高到低是5800,……,10000元各不相同,在輸入計(jì)算時(shí),把最大的數(shù)錯(cuò)誤地輸成100000元,則依據(jù)錯(cuò)誤的數(shù)據(jù)算出的平均數(shù)比實(shí)際平均數(shù)多( )
A. 900元B. 942元C. 90000元D. 9000元
【答案】A
【解析】
把除家庭收入為10000元的另外99個(gè)家庭收入的和當(dāng)作一個(gè)整體,設(shè)為a元,那么根據(jù)平均數(shù)的計(jì)算公式,分別算出依據(jù)錯(cuò)誤數(shù)字算出的平均值與實(shí)際數(shù)字的平均值,然后相減即可.
設(shè)除家庭收入為10000元的另外99個(gè)家庭收入的和為a元,
把最大的數(shù)10000錯(cuò)誤地輸成100000元時(shí)這100個(gè)家庭收入的平均值為 (元)
實(shí)際這100個(gè)家庭收入的平均值為 (元),
所以依據(jù)錯(cuò)誤的數(shù)據(jù)算出的平均數(shù)比實(shí)際平均數(shù)多 (元),
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,B(2,0),A(6,6),M(0,6),P點(diǎn)為y軸上一動(dòng)點(diǎn)。
(1)當(dāng)P點(diǎn)在線段OM上運(yùn)動(dòng)時(shí),試問(wèn)是否存在一個(gè)點(diǎn)P使=13,若存在,請(qǐng)求出P點(diǎn)耳朵坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(2)當(dāng)點(diǎn)P在y的正半軸上運(yùn)動(dòng)時(shí)(不包括O,M),∠PAM,∠APB,∠PBO三者之間是否存在某種數(shù)量關(guān)系,如果有,請(qǐng)利用所學(xué)的知識(shí)找出并證明;如果沒(méi)有,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,港口A在觀測(cè)站O的正東方向,OA=6km,某船從港口A出發(fā),沿北偏東15°方向航行一段距離后到達(dá)B處,此時(shí)從觀測(cè)點(diǎn)O處測(cè)得該船位于北偏東60°的方向,則該船航行的距離為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)C,O,B在同一條直線上,∠AOB=90°,∠AOE=∠DOB,則下列結(jié)論:①∠EOD=90°;②∠COE=∠AOD;③∠AOE+∠DOC=180;④互余的角有4對(duì).其中正確的有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D在AB上,在下列四個(gè)條件中:①∠ACD=∠B;②∠ADC=∠ACB;③AC2=ADAB;④ABCD=ADCB,能滿足△ADC與△ACB相似的條件是( )
A.①、②、③ B.①、③、④ C.②、③、④ D.①、②、④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC,∠C=90°,∠ABC=40°,按以下步驟作圖:
①以點(diǎn)A為圓心,小于AC的長(zhǎng)為半徑.畫(huà)弧,分別交AB、AC于點(diǎn)E、F;
②分別以點(diǎn)E、F為圓心,大于EF的長(zhǎng)為半徑畫(huà)弧,兩弧相交于點(diǎn)G;
③作射線AG,交BC邊于點(diǎn)D,則∠ADC的度數(shù)為________.
【答案】65°
【解析】由題意可知,所作的射線AG是∠BAC的角平分線.
∵在△ABC中,∠C=90°,∠ABC=40°,
∴∠BAC=180°-90°-40°=50°,
∴∠CAD=∠BAC=25°,
∴∠ADC=180°-90°-25°=65°.
【題型】填空題
【結(jié)束】
13
【題目】如圖所示,已知線段AB,∠α,∠β,分別過(guò)A、B作∠CAB=∠α,∠CBA=∠β.(不寫(xiě)作法,保留作圖痕跡)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】認(rèn)真閱讀下面關(guān)于三角形內(nèi)外角平分線所夾角的探究片段,完成所提出的問(wèn)題.
(1)如圖1,在△ABC中,O是∠ABC與∠ACB的平分線BO和CO的交點(diǎn),試證明∠BOC=90°+
(2)如圖2中,O是∠ABC與外角∠ACD的平分線BO和CO的交點(diǎn),試分析∠BOC與∠A有怎樣的關(guān)系?請(qǐng)說(shuō)明理由.
(3)如圖3中,O是外角∠DBC與外角∠ECB的平分線BO和CO的交點(diǎn),則∠BOC與∠A有怎樣的關(guān)系?(只寫(xiě)結(jié)論,不需證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,四邊形中,,,,且,
試求:(1)的度數(shù);(2)四邊形的面積(結(jié)果保留根號(hào));
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com