試題分析:(1)過點C作CM⊥AC交AF延長線于點M,通過證明△ABE≌△CAM和△ABE≌△ACD得到∠EHC=90°,即可證明.
(2)過點C作CM⊥AC交AF延長線于點M,由(1)△ABE≌△CAM和△ABE≌△ACD,通過角的等量代換即可得到△QCF≌△MCF,從而得到BP=BE+PE=AM+PQ=(AF+FM)+PQ=AF+FQ+PQ=AF+FP.
(1)如圖,過點C作CM⊥AC交AF延長線于點M,
∵∠BAC=90°,AF⊥BE于G,∴∠1+∠5=∠2+∠5="90°" .∴∠1=∠2.
又∵∠BAC=∠ACM=90°,AB=AC,∴△ABE≌△CAM. ∴AE=CM,∠5=∠M.
∵AE=EC,∴EC=CM.
∵AB=AC,∠BAC=90°, ∴∠ABC=∠ACB=45°.
∵∠ACM=90°,∴∠4=
=∠ACF.
∴△ECF≌△MCF.∴∠6=∠M. ∴∠6=∠5.
∵AB=AC,點D、E分別是AB、AC邊的中點,∴AD=AE.
又∵AB=AC,∠BAE=∠CAD,∴△ABE≌△ACD.∴∠1=∠3. ∴∠3+∠6=90°.
∴∠EHC=90°.∴EF⊥CD.
(2)如圖,過點C作CM⊥AC交AF延長線于點M,
由(1)得:△ABE≌△CAM,∴AE=CM,∠5=∠M,BE=AM.
由(1)得:△ABE≌△ACD,∴∠1=∠3.
∵FP⊥CD于H,∠BAC=90°,∴∠3+∠6=∠1+∠5. ∴∠6=∠5.
∵∠6=∠8,∠7=∠5,∴∠7=∠8. ∴EP=QP.
∵∠6=∠5,∠5=∠M,∴∠6=∠M.
∵AB=AC,∠BAC=90°, ∴∠ABC=∠ACB=45°.
∵∠ACM=90°,∴∠4=
=∠ACF. ∴△QCF≌△MCF.
∴FQ=FM.
∴BP=BE+PE=AM+PQ=(AF+FM)+PQ=AF+FQ+PQ=AF+FP.