【題目】參照學(xué)習(xí)函數(shù)的過程與方法,探究函數(shù)的圖象與性質(zhì).因為,即,所以我們對比函數(shù)來探究.

列表:

描點(diǎn):在平面直角坐標(biāo)系中,以自變量的取值為橫坐標(biāo),以相應(yīng)的函數(shù)值為縱坐標(biāo),描出相應(yīng)的點(diǎn),如圖所示:

1)請補(bǔ)全函數(shù)圖象;

2)觀察圖象并分析表格,回答下列問題:

①當(dāng)時,的增大而_________;(填“增大”或“減小”)

的圖象是由的圖象向________平移________個單位而得到;

③圖象關(guān)于點(diǎn)_________中心對稱.(填點(diǎn)的坐標(biāo))

3)結(jié)合函數(shù)圖象,當(dāng)時,求的取值范圍.

【答案】1)見詳解;(2)增大,上,1,(0,1);(3)﹣1x0x1

【解析】

1)用光滑曲線順次連接即可;

2)利用圖象法即可解決問題;

3)聯(lián)立方程求出點(diǎn)AB的坐標(biāo),由此即可解決問題.

解:(1)函數(shù)圖象如圖所示:

2當(dāng)x0時,yx的增大而增大;

的圖象是由y的圖象向上平移1個單位而得到;

圖象關(guān)于點(diǎn)(01)中心對稱.

故答案為:增大,上,1,(0,1);

3)根據(jù)題意得:=﹣2x+1,解得:x=±1

當(dāng)x1時,y=﹣2x+1=﹣1,

當(dāng)x=﹣1時,y=﹣2x+13

∴交點(diǎn)為(1,﹣1),(﹣1,3),

∴當(dāng)>﹣2x+1時,求x的取值范圍為﹣1x0x1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】宣和中學(xué)圖書館今日購進(jìn)甲、乙兩種圖書,每本甲種圖書的進(jìn)價比每本乙種圖書的進(jìn)價高20元,花780元購進(jìn)甲種圖書的數(shù)量與花540元購進(jìn)乙種圖書的數(shù)量相同.

1)求甲、乙兩種圖書每本的進(jìn)價分別是多少元;

2)宣和中學(xué)購進(jìn)甲、乙兩種圖書共70本,總購書費(fèi)用不超過3950元,則最多購進(jìn)甲種圖書多少本.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】著名數(shù)學(xué)教育家波利亞曾說:“對一個數(shù)學(xué)問題,改變它的形式,變換它的結(jié)構(gòu),直到發(fā)現(xiàn)有價值的東西,這是數(shù)學(xué)解題的一個重要原則.”

閱讀下列兩則材料,回答問題

材料一:平方運(yùn)算和開方運(yùn)算是互逆運(yùn)算,如:a2±2ab+b2=(a±b2,那么|a±b|,那么如何將雙重二次根式a0,b0,a±20)化簡呢?如能找到兩個數(shù)m,nm0,n0),使得(2+2am+na,且使mnb,那么a±2=(2+2±2=(2

|,雙重二次根式得以化簡.

例如化簡:.∵31+221×2,∴3+2=(2+2+2,

1+

材料二:在直角坐標(biāo)系xoy中,對于點(diǎn)Pxy)和Qx,y)出如下定義:若y,則稱點(diǎn)Q為點(diǎn)P的“橫負(fù)縱變點(diǎn)”例如,點(diǎn)(3,2)的“橫負(fù)縱變點(diǎn)”為(3,2),點(diǎn)(﹣2,5)的“橫負(fù)縱變點(diǎn)”為(﹣2,﹣5

問題:

1)請直接寫出點(diǎn)(﹣3,﹣2)的“橫負(fù)縱變點(diǎn)”為   ;化簡   

2)點(diǎn)M為一次函數(shù)y=﹣x+1圖象上的點(diǎn),M為點(diǎn)M的橫負(fù)縱變點(diǎn),已知N1,1),若MN,求點(diǎn)M的坐標(biāo);

3)已知b為常數(shù)且1≤b≤2,點(diǎn)P在函數(shù)y=﹣x2+16+)(7≤xa)的圖象上,其“橫負(fù)縱變點(diǎn)”的縱坐標(biāo)y的取值范圍是﹣32y′≤32,若a為偶數(shù),求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yax22ax2的圖象(記為拋物線C1)頂點(diǎn)為M,直線ly2xax軸,y軸分別交于A,B

1)對于拋物線C1,以下結(jié)論正確的是   ;

對稱軸是:直線x1;頂點(diǎn)坐標(biāo)(1,﹣a2);拋物線一定經(jīng)過兩個定點(diǎn).

2)當(dāng)a0時,設(shè)△ABM的面積為S,求Sa的函數(shù)關(guān)系;

3)將二次函數(shù)yax22ax2的圖象C1繞點(diǎn)Pt,﹣2)旋轉(zhuǎn)180°得到二次函數(shù)的圖象(記為拋物線C2),頂點(diǎn)為N

當(dāng)﹣2x1時,旋轉(zhuǎn)前后的兩個二次函數(shù)y的值都會隨x的增大而減小,求t的取值范圍;

當(dāng)a1時,點(diǎn)Q是拋物線C1上的一點(diǎn),點(diǎn)Q在拋物線C2上的對應(yīng)點(diǎn)為Q',試探究四邊形QMQ'N能否為正方形?若能,求出t的值,若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】不覽夜景,未到重慶山城夜景,早在清乾隆時期就已有名氣,被時任巴縣知縣王爾鑒,列為巴渝十二景之一在朝天門碼頭坐船游兩江(即長江、嘉陵江),是游重慶賞夜景的一個經(jīng)典項目.一艘輪船從朝天門碼頭出發(fā)勻速行駛,小時后一快艇也從朝天門碼頭出發(fā)沿同一線路勻速行駛,當(dāng)快艇先到達(dá)目的地后立刻按原速返回并在途中與輪船第二次相遇.設(shè)輪船行駛的時間為,快艇和輪船之間的距離為,的函數(shù)關(guān)系式如圖所示,則快艇與輪船第二次相遇時到朝天門碼頭的距離為_____千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù) y=ax2+bx+c 的圖象與 x 軸的交點(diǎn)的橫坐標(biāo)分別為-1,3,則:

①ac<0;②2a+b=0;③4a+2b+c>0;④對于任意 x 均有 ax2+bx≥a+b,其中結(jié)論正確的個數(shù)有( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某校綜合實踐活動小組的同學(xué)欲測量公園內(nèi)一棵樹DE的高度,他們在這棵樹的正前方一座樓亭前的臺階上A點(diǎn)處測得樹頂端D的仰角為30°,朝著這棵樹的方向走到臺階下的點(diǎn)C處,測得樹頂端D的仰角為60°.已知A點(diǎn)的高度AB3米,臺階AC的坡度為1(即ABBC=1),且B、C、E三點(diǎn)在同一條直線上.請根據(jù)以上條件求出樹DE的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,在Rt△ABC中,∠C=90,∠BAC的角平分線ADBC邊于D

1)以AB邊上一點(diǎn)O為圓心作⊙O,使它過A,D兩點(diǎn)(不寫作法,保留作圖痕跡),再判斷直線BC⊙O的位置關(guān)系,并說明理由;

2)若(1)中的⊙OAB邊的另一個交點(diǎn)為E,AB=3,BD=3,求線段BDBE與劣弧DE所圍成的圖形面積.(結(jié)果保留根號和

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,菱形ABCD中,∠B60°,動點(diǎn)P以每秒1個單位的速度自點(diǎn)A出發(fā)沿線段AB運(yùn)動到點(diǎn)B,同時動點(diǎn)Q以每秒2個單位的速度自點(diǎn)B出發(fā)沿折線BCD運(yùn)動到點(diǎn)D.圖2是點(diǎn)P、Q運(yùn)動時,BPQ的面積S隨時間t變化關(guān)系圖象,則a的值是( 。

A.2B.2.5C.3D.2

查看答案和解析>>

同步練習(xí)冊答案