精英家教網 > 初中數學 > 題目詳情
已知二次函數y=a(x-m)2-2a(x-m)(a,m為常數,且a≠0).
(1)求證:不論a與m為何值,該函數的圖象與x軸總有兩個公共點;
(2)設該函數的圖象的頂點為C,與x軸交于A,B兩點,當△ABC是等腰直角三角形時,求a的值.
(1)見解析;(2).

試題分析:(1)二次函數和x軸有兩個交點,判別式>0即可;
(2)先求出頂點坐標,由△ABC是等腰直角三角形,可以得出AB邊上高等于1,即可得出a的值.
試題解析:
(1)證明:y=a(x-m)2-2a(x-m)=ax2-(2am+2a)x+am2+2am
當a≠0時,=(2am+2a)2-4a(am2+2am)


∴不論a與m為何值,該函數的圖象與x軸總有兩個公共點.
(2)y=a(x-m)2-2a(x-m)=a(x-m-1)2-a
∴C(m+1,-a)
當y=0時,
解得x1=m,x2=m+2.
∴AB=(m+2)-m=2.
當△ABC是等腰直角三角形時,可求出AB邊上高等于1.

練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:單選題

將拋物線先沿軸向右平移1個單位, 再沿軸向上移2個單位,所得拋物線的解析式是(    )
A.B.
C.D.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

拋物線向左平移2個單位,再向下平移1個單位后得到的拋物線解析式是             .

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知直線y=kx-3與x軸交于點A(4,0),與y軸交于點C,拋物線經過點A和點C,動點P在x軸上以每秒1個長度單位的速度由拋物線與x軸的另一個交點B向點A運動,點Q由點C沿線段CA向點A運動且速度是點P運動速度的2倍.

(1)求此拋物線的解析式和直線的解析式;
(2)如果點P和點Q同時出發(fā),運動時間為t(秒),試問當t為何值時,以A、P、Q為頂點的三角形與△AOC相似;
(3)在直線CA上方的拋物線上是否存在一點D,使得△ACD的面積最大.若存在,求出點D的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知二次函數

(1)證明:不論取何值,該函數圖象與軸總有兩個公共點;
(2)若該函數的圖象與軸交于點(0,5),求出頂點坐標,并畫出該函數圖象.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,拋物線y=-x2+(m-1)x+m與y軸交于(0,3)點,

(1)求出這條拋物線;
(2)求它與x軸的交點和拋物線頂點的坐標;
(3)x取什么值時,拋物線在x軸上方?
(4)x取什么值時,y的值隨x的增大而減小?

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

定義:把一個半圓與拋物線的一部分合成封閉圖形,我們把這個封閉圖形稱為“蛋圓”.如果一條直線與“蛋圓”只有一個交點,那么這條直線叫做“蛋圓”的切線.如圖,A,B,C,D分別是“蛋圓”與坐標軸的交點,已知點D的坐標為(0,8),AB為半圓的直徑,半圓的圓心M的坐標為(1,0),半圓半徑為3.

(1)請你直接寫出“蛋圓”拋物線部分的解析式          ,自變量的取值范圍是          ;
(2)請你求出過點C的“蛋圓”切線與x軸的交點坐標;
(3)求經過點D的“蛋圓”切線的解析式.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知:拋物線與x軸的兩個交點分別為A(1,0)和B(3,0),與y軸交于點C.

(1)求此二次函數的解析式;
(2)寫出點C的坐標________,頂點D的坐標為__________;
(3)將直線CD沿y軸向下平移3個單位長度,求平移后直線m的解析式;
(4)在直線m上是否存在一點E,使得以點E、A、B、C為頂點的四邊形是梯形,如果存在,請直接寫出所有滿足條件的E點的坐標__________________________________(不必寫出過程).

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

對拋物線而言,下列結論正確的是
A.與軸有兩個交點B.開口向上
C.與軸交點坐標是(0,3)D.頂點坐標是(1,)

查看答案和解析>>

同步練習冊答案