【題目】二次函數(shù)的圖象如圖所示,下列五個代數(shù)式、、、、中,值大于的個數(shù)為( )
A. 5 B. 4 C. 3 D. 2
【答案】D
【解析】
由二次函數(shù)圖像即可得出a、b、c的正負(fù),進(jìn)而得出ab、ac的正負(fù);從圖像中判斷當(dāng)x=﹣1時y的正負(fù)即可得出a﹣b+c的正負(fù);由二次函數(shù)與x軸的交點的個數(shù)即可判斷b2﹣4ac的正負(fù);由對稱軸為x=1,得出a、b的關(guān)系式,即可判斷2a+b的正負(fù).
由圖像可得:a<0,b>0,c<0,
∴ab<0,ac>0;
∵當(dāng)x=﹣1時,y<0,
∴a﹣b+c<0;
∵二次函數(shù)與x軸有兩個交點,
∴方程ax2+bx+c=0(a≠0)有兩個不相等的實數(shù)根,
∴b2﹣4ac>0;
由圖像可得,對稱軸為x=1=﹣,
∴b=﹣2a,
∴2a+b=0.
∴值大于0 的有:ac,b2﹣4ac.
故選D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中邊AB的垂直平分線分別交BC、AB于點D、E, AE=3cm,△ADC的周長為9cm,則△ABC的周長是( )cm.
A.9B.12C.15D.18
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖的△ABC中,AB>AC>BC,且D為BC上一點,F(xiàn)打算在AB上找一點P,在AC上找一點Q,使得△APQ與以P、D、Q為頂點的三角形全等,以下是甲、乙兩人的作法:
甲:連接AD,作AD的中垂線分別交AB、AC于P點、Q點,則P、Q兩點即為所求;
乙:過D作與AC平行的直線交AB于P點,過D作與AB平行的直線交AC于Q點,則P、Q兩點即為所求;
對于甲、乙兩人的作法,下列判斷何者正確( 。?
A.兩人皆正確B.兩人皆錯誤C.甲正確,乙錯誤D.甲錯誤,乙正確
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】水果店張阿姨以每千克2元的價格購進(jìn)某種水果若干千克,銷售一部分后,根據(jù)市場行情降價銷售,銷售額y (元)與銷售量x (千克)之間的關(guān)系如圖所示.
(1)情境中的變量有_______________.
(2)求降價后銷售額y (元)與銷售量x (千克)之間的函數(shù)表達(dá)式;
(3)當(dāng)銷售量為多少千克時,張阿姨銷售此種水果的利潤為150元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店用1000元人民幣購進(jìn)水果銷售,過了一段時間又用2800元購進(jìn)這種水果,所購數(shù)量是第一次購進(jìn)數(shù)量的2倍,但每千克的價格比第一次購進(jìn)的貴了2元.
(1)求該商店第一次購進(jìn)水果多少千克?
(2)該商店兩次購進(jìn)的水果按照相同的標(biāo)價銷售一段時間后,將最后剩下的100千克按照標(biāo)價的半價出售.售完全部水果后,利潤不低于1700元,則最初每千克水果的標(biāo)價至少是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,頂角為36°的等腰三角形稱為銳角黃金三角形.它的底與腰之比為≈0.618,記為k.受此啟發(fā),八年級數(shù)學(xué)課題組探究底角為36°的等腰三角形,也稱鈍角黃金三角形,如圖2.
(1)在圖1和圖2中,若DE=BC,求證:EF=AB;
(2)求鈍角黃金三角形底與腰的比值(用含k的式子表示);
(3)如圖3,在鈍角黃金三角形ABC中,AD,DE依次分割出鈍角黃金三角形△ADC,△ADE.若AB=1,記△ABC,△ADC,△ADE分別為第1,2,3個鈍角黃金三角形,以此類推,求第2020個鈍角黃金三角形的周長(用含k的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線過B(﹣2,6),C(2,2)兩點.
(1)試求拋物線的解析式;
(2)記拋物線頂點為D,求△BCD的面積;
(3)若直線向上平移b個單位所得的直線與拋物線段BDC(包括端點B、C)部分有兩個交點,求b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D為BC邊上一點,∠B=30°∠DAB=45°.(1)求∠DAC的度數(shù);(2)請說明:AB=CD.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com