【題目】如圖,∠AOB=30°OC為∠AOB內部一條射線,點P為射線OC上一點,OP=4,點M、N分別為OA、OB邊上動點,則MNP周長的最小值為(

A. B. C. D.

【答案】D

【解析】

作點P關于OA的對稱點P1,點P關于OB的對稱點P2,連結P1P2,與OA的交點即為點M,與OB的交點即為點N,則此時M、N符合題意,求出線段P1P2的長即可.

作點P關于OA的對稱點P1,點P關于OB的對稱點P2,連結P1P2,

OA的交點即為點M,與OB的交點即為點N,

PMN的最小周長為PM+MN+PN=P1M+MN+P2N=P1P2,即為線段P1P2的長,

連結OP1、OP2,則OP1=OP2=4,

又∵∠P1OP2=2AOB=60°,

∴△OP1P2是等邊三角形,

P1P2=OP1=4,

PMN的周長的最小值是4

故選D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在⊙O的內接三角形ABC,ACB=90°,AC=2BC,CAB的垂線l交⊙O于另一點D,垂足為E.P上異于A,C的一個動點,射線APl于點F,連接PCPD,PDAB于點G.

(1)求證:PAC∽△PDF;

(2)AB=5,PD的長;

(3)在點P運動過程中,=x,tanAFD=y(tǒng),yx之間的函數(shù)關系式.(不要求寫出x的取值范圍)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,直線,直線與直線分別相交于、兩點,直線與直線、分別相交于、兩點,點在直線上運動(不與、兩點重合).

1)如圖1,當點在線段上運動時,總有:,請說明理由:

2)如圖2,當點在線段的延長線上運動時,、之間有怎樣的數(shù)量關系,并說明理由:

3)如圖3,當點在線段的延長線上運動時,、、之間又有怎樣的數(shù)量關系(只需直接給出結論)?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果三角形有一邊上的中線長恰好等于這條邊的長,那么稱這個三角形為“有趣三角形”,這條中線稱為“有趣中線”.已知中,,一條直角邊為3,如果是“有趣三角形”,那么這個三角形“有趣中線”的長等于________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,方格紙中每個小正方形的邊長為1,△ABC的頂點均在格點上. 請在所給直角坐標系中按要求畫圖和解答下列問題:

(1)將△ABC沿x軸翻折后再沿x軸向右平移1個單位,在圖中畫出平移后的△A1B1C1,若△ABC內有一點P(m,n),則經過上述變換后點P的坐標為___ __.

(2)作出△ABC關于坐標原點O成中心對稱的△A2B2C2

(3) 若將△ABC繞某點逆時針旋轉90°后,其對應點分別為A3(2,1),B3(4,0),C3(3,-2),則旋轉中心坐標為___ _.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】填空,把下面的推理過程補充完整,并在括號內注明理由:

如圖,已知AB、C、D在同一直線上,AEDF,AC=BD,∠E=F,求證:BECF.

證明:AEDF(已知)

_________(兩直線平行,內錯角相等)

AC=BD(已知)

又∵AC=AB+BC,BD=BC+CD

________(等式的性質)

∵∠E=F(已知)

ABEDCF(___________)

∴∠ABE=DCF(_________________)

ABF+CBE=180°,∠DCF+BCF=180°

∴∠CBE=BCF(__________________)

BECF(________________________)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:(1)當線段AB平行于投影面P時,它的正投影是線段A1B1,線段與它的投影的大小關系為AB

___A1B1

(2)當線段AB傾斜于投影面P時,它的正投影是線段A2B2,線段與它的投影的大小關系為AB___A2B2;

(3)當線段AB垂直于投影面P時,它的正投影是______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】今年“五一節(jié)”前,某商場用60萬元購進某種商品,該商品有甲、乙兩種包裝共500件,其中每件甲包裝中有75個A種產品,每個A產品的成本為12元;每件乙包裝中有100個B產品,每個B種產品的成本為14元.商場將A產品標價定為每個18元,B產品標價定為每個20元.

(1)甲、乙兩種包裝的產品各有多少件?

(2)“五一節(jié)”商場促銷,將A產品按原定標價打9折銷售,B種產品按原定標價打8.5折銷售,“五一節(jié)”期間該產品全部賣完,該商場銷售該商品共獲利多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,ABCD,點ECD上,點F、GAB上,且AF=FG=BG=DE=CE。以A、BC、DE、F、G7個點中的三個為頂點的三角形中,面積最小的三角形有_________個,面積最大的三角形有__________個。

查看答案和解析>>

同步練習冊答案