【題目】如圖,A,P,B,C是圓上的四個(gè)點(diǎn),∠APC=∠CPB=60°,AP,CB的延長(zhǎng)線相交于點(diǎn)D.
(1)求證:△ABC是等邊三角形;
(2)若∠PAC=90°,AB=,求PD的長(zhǎng).
【答案】(1)證明見解析;(2)4.
【解析】
試題分析:(1)由圓周角定理可知∠ABC=∠BAC=60°,從而可證得△ABC是等邊三角形;
(2)由△ABC是等邊三角形可得出“AC=BC=AB=,∠ACB=60°”,在直角三角形PAC和DAC通過特殊角的正、余切值即可求出線段AP、AD的長(zhǎng)度,二者作差即可得出結(jié)論.
試題解析:(1)∵∠ABC=∠APC,∠BAC=∠BPC,∠APC=∠CPB=60°,∴∠ABC=∠BAC=60°,∴△ABC是等邊三角形;
(2)∵△ABC是等邊三角形,AB=,∴AC=BC=AB=,∠ACB=60°.在Rt△PAC中,∠PAC=90°,∠APC=60°,AC=,∴AP=ACcot∠APC=2.在Rt△DAC中,∠DAC=90°,AC=,∠ACD=60°,∴AD=ACtan∠ACD=6,∴PD=AD﹣AP=6﹣2=4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在△ABC中,AB=AC,∠BAC=90°,分別過B、C向過A的直線作垂線,垂足分別為E、F.
(1)如圖①過A的直線與斜邊BC不相交時(shí),求證:EF=BE+CF;
(2)如圖②過A的直線與斜邊BC相交時(shí),其他條件不變,若BE=10,CF=3,求:FE長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算(-a)3·(a2)3·(-a)2的結(jié)果正確的是( )
A. -a10B. -a11C. a11D. a13
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1是一個(gè)用鐵絲圍成的籃框,我們來(lái)仿制一個(gè)類似的柱體形籃框.如圖2,它是由一個(gè)半徑為r、圓心角90°的扇形A2OB2,矩形A2C2EO、B2D2EO,及若干個(gè)缺一邊的矩形狀框A1C1D1B1、A2C2D2B2、…、AnBnCnDn,OEFG圍成,其中A1、G、B1在上,A2、A3…、An與B2、B3、…Bn分別在半徑OA2和OB2上,C2、C3、…、Cn和D2、D3…Dn分別在EC2和ED2上,EF⊥C2D2于H2,C1D1⊥EF于H1,F(xiàn)H1=H1H2=d,C1D1、C2D2、C3D3、CnDn依次等距離平行排放(最后一個(gè)矩形狀框的邊CnDn與點(diǎn)E間的距離應(yīng)不超過d),A1C1∥A2C2∥A3C3∥…∥AnCn.
(1)求d的值;
(2)問:CnDn與點(diǎn)E間的距離能否等于d?如果能,求出這樣的n的值,如果不能,那么它們之間的距離是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把一條彎曲的公路改成直道,可以縮短路程.用幾何知識(shí)解釋其道理正確的是( )
A.兩點(diǎn)確定一條直線 B.垂線段最短
C.兩點(diǎn)之間線段最短 D.三角形兩邊之和大于第三邊
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)抽樣調(diào)查后得到n名學(xué)生年齡情況,將結(jié)果繪制成如圖的扇形統(tǒng)計(jì)圖.
(1)被調(diào)查學(xué)生年齡的中位數(shù)是_______,眾數(shù)是________;
(2)被調(diào)查的學(xué)生中12歲學(xué)生比16歲學(xué)生多30人,通過計(jì)算求14歲學(xué)生的人數(shù);
(3)通過計(jì)算求該學(xué)校學(xué)生年齡的平均數(shù)(精確到1歲).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料并回答問題:
材料1:如果一個(gè)三角形的三邊長(zhǎng)分別為a,b,c,記,那么三角形的面積為. ①
古希臘幾何學(xué)家海倫(Heron,約公元50年),在數(shù)學(xué)史上以解決幾何測(cè)量問題而聞名.他在《度量》一書中,給出了公式①和它的證明,這一公式稱海倫公式.
我國(guó)南宋數(shù)學(xué)家秦九韶(約1202﹣﹣約1261),曾提出利用三角形的三邊求面積的秦九韶公式:. ②
下面我們對(duì)公式②進(jìn)行變形:
.
這說明海倫公式與秦九韶公式實(shí)質(zhì)上是同一公式,所以我們也稱①為海倫﹣﹣秦九韶公式.
問題:如圖,在△ABC中,AB=13,BC=12,AC=7,⊙O內(nèi)切于△ABC,切點(diǎn)分別是D、E、F.
(1)求△ABC的面積;
(2)求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列調(diào)查中,最適合采用全面調(diào)查(普查)方式的是( )
A.對(duì)重慶市居民日平均用水量的調(diào)查
B.對(duì)一批LED節(jié)能燈使用壽命的調(diào)查
C.對(duì)重慶新聞?lì)l道“天天630”欄目收視率的調(diào)查
D.對(duì)某校九年級(jí)(1)班同學(xué)的身高情況的調(diào)查
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用反證法證明一個(gè)三角形中至少有兩個(gè)銳角,首先我們可以假設(shè)( )
A.一個(gè)三角形中最多有三個(gè)銳角
B.一個(gè)三角形中最多有一個(gè)銳角
C.一個(gè)三角形中有一個(gè)角不是銳角
D.一個(gè)三角形中最多有兩個(gè)銳角
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com