(2012•臺州)如圖,為測量江兩岸碼頭B、D之間的距離,從山坡上高度為50米的A處測得碼頭B的仰角∠EAB為15°,碼頭D的仰角∠EAD為45°,點(diǎn)C在線段BD的延長線上,AC⊥BC,垂足為C,求碼頭B、D的距離(結(jié)果保留整數(shù)).
分析:根據(jù)AE∥BC,得到∠ADC=∠EAD=45°,再根據(jù)AC⊥CD,得到CD=AC=50,從而得到∠ABC=∠EAB=15°,然后求得BC的長即可求得BD的長.
解答:解:∵AE∥BC,
∴∠ADC=∠EAD=45°
又∵AC⊥CD,
∴CD=AC=50m
∵AE∥BC
∴∠ABC=∠EAB=15°
∴BC=
AC
tan15°
≈227.3m,
∴BD=227.3-50≈177(米).
答:碼頭B、D的距離約為177米.
點(diǎn)評:本題考查了解直角三角形的應(yīng)用,解題的關(guān)鍵是從實(shí)際問題中整理出直角三角形并求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•臺州)如圖,將正方形ABCD沿BE對折,使點(diǎn)A落在對角線BD上的A′處,連接A′C,則∠BA′C=
67.5
67.5
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•臺州)如圖,點(diǎn)D、E、F分別為△ABC三邊的中點(diǎn),若△DEF的周長為10,則△ABC的周長為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•臺州)如圖,菱形ABCD中,AB=2,∠A=120°,點(diǎn)P,Q,K分別為線段BC,CD,BD上的任意一點(diǎn),則PK+QK的最小值為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•臺州)如圖,正比例函數(shù)y=kx(x≥0)與反比例函數(shù)y=
mx
(x>0)
的圖象交于點(diǎn)A(2,3),
(1)求k,m的值;
(2)寫出正比例函數(shù)值大于反比例函數(shù)值時(shí)自變量x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案