【題目】如圖,在平面直角坐標(biāo)系中,A﹣15),B﹣2,0),C﹣4,3).

1)請(qǐng)畫(huà)出△ABC關(guān)于y軸對(duì)稱的△A'BC′(其中A'B、C′分別是A、B、C的對(duì)稱點(diǎn),不寫畫(huà)法)

2)寫出C′的坐標(biāo),并求△ABC的面積;

3)在y軸上找出點(diǎn)P的位置使線段PA+PB的最小

【答案】(1)答案見(jiàn)解析;(2)C′的坐標(biāo)(4,3),6.5;(3)答案見(jiàn)解析.

【解析】試題分析:(1)根據(jù)關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)特點(diǎn),求出A、BC的對(duì)稱點(diǎn)A'B、C′,然后描點(diǎn)即可;

(2)利用C′與C關(guān)于y軸對(duì)稱,求出左邊,然后根據(jù)分割法求出面積;

(3)根據(jù)軸對(duì)稱的性質(zhì),和兩點(diǎn)之間,線段最短,即可求積P的位置.

試題解析:解:(1)如圖所示:

(2)C′的坐標(biāo)(4,3),△ABC的面積:3×5﹣0.5×2×3﹣0.5×2×3﹣0.5×1×5=15﹣3﹣3﹣2.5=6.5;

(3)連接A′B,與y軸的交點(diǎn)就是P的位置.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是( 。
A.兩個(gè)全等的三角形一定關(guān)于某條直線對(duì)稱
B.關(guān)于某條直線對(duì)稱的兩個(gè)三角形一定全等
C.直角三角形是軸對(duì)稱圖形
D.銳角三角形是軸對(duì)稱圖形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線p: 的頂點(diǎn)為C,與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),點(diǎn)C關(guān)于x軸的對(duì)稱點(diǎn)為C′,我們稱以A為頂點(diǎn)且過(guò)點(diǎn)C′,對(duì)稱軸與y軸平行的拋物線為拋物線p的“夢(mèng)之星”拋物線,直線AC′為拋物線p的“夢(mèng)之星”直線.若一條拋物線的“夢(mèng)之星”拋物線和“夢(mèng)之星”直線分別是和y=2x+2,則這條拋物線的解析式為____________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,EAB的中點(diǎn),連接DE并延長(zhǎng)交CB的延長(zhǎng)線于點(diǎn)F,點(diǎn)MBC邊上,且∠MDF=ADF

1)求證:ADE≌△BFE

2)連接EM,如果FM=DM,判斷EMDF的關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】李先生乘出租車去某公司辦事,下車時(shí),打出的電子收費(fèi)單為里程11千米,應(yīng)收29.10.該城市的出租車收費(fèi)標(biāo)準(zhǔn)如下表所示,請(qǐng)求出起步價(jià)N(N<12)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店原來(lái)將進(jìn)貨價(jià)為8元的商品按10元售出,每天可銷售200.現(xiàn)在采用提高售價(jià),減少進(jìn)貨量的方法來(lái)增加利潤(rùn),已知每件商品漲價(jià)1元,每天的銷售量就減少20.設(shè)這種商品每個(gè)漲價(jià)元.

1)填空:原來(lái)每件商品的利潤(rùn)是 元,漲價(jià)后每件商品的實(shí)際利潤(rùn)是 (可用含的代數(shù)式表示);

2)為了使每天獲得700元的利潤(rùn),售價(jià)應(yīng)定為多少元?

(3)售價(jià)定為多少元時(shí),每天利潤(rùn)最大,最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知銳角△ABC中,CD、BE分別是AB、AC邊上的高,M、N分別是線段BC、DE的中點(diǎn).

(1)求證:MN⊥DE.

(2)連結(jié)DM,ME,猜想∠A與∠DME之間的關(guān)系,并證明猜想.

(3)當(dāng)∠A變?yōu)殁g角時(shí),如圖,上述(1)(2)中的結(jié)論是否都成立, 若結(jié)論成立,直接回答,不需證明;若結(jié)論不成立,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面直角坐標(biāo)系中,將正方形向上平移3個(gè)單位后,得到的正方形各頂點(diǎn)與原正方形各頂點(diǎn)坐標(biāo)相比( 。

A.橫坐標(biāo)不變,縱坐標(biāo)加 3B.縱坐標(biāo)不變,橫坐標(biāo)加 3

C.橫坐標(biāo)不變,縱坐標(biāo)乘以 3D.縱坐標(biāo)不變,橫坐標(biāo)乘以 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題12分)如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)m為常數(shù))的圖象與x軸交于點(diǎn)A(-3,0),與y軸交于點(diǎn)C,以直線x=1為對(duì)稱軸的拋物線yax2bxca、bc為常數(shù),且a≠0)經(jīng)過(guò)A、C兩點(diǎn),并與x軸的正半軸交于點(diǎn)B

(1) 求m的值及拋物線的函數(shù)表達(dá)式;

(2) 是否存在拋物線上一動(dòng)點(diǎn)Q,使得ACQ是以AC為直角邊的直角三角形?若存在,求出點(diǎn)Q的橫坐標(biāo);若存在,請(qǐng)說(shuō)明理由;

(3) 若P是拋物線對(duì)稱軸上一動(dòng)點(diǎn),且使ACP周長(zhǎng)最小,過(guò)點(diǎn)P任意作一條與y軸不平行的直線交拋物線于M1(x1,y1),M2(x2y2)兩點(diǎn),試問(wèn)是否為定值,如果是,請(qǐng)求出結(jié)果,如果不是請(qǐng)說(shuō)明理由. (參考公式:在平面直角坐標(biāo)之中,若A((x1,y1),B(x2,y2),則A,B兩點(diǎn)間的距離為

查看答案和解析>>

同步練習(xí)冊(cè)答案