如圖,已知:在直角坐標系中.點E從O點出發(fā),以1個單位/秒的速度沿x軸正方向運動,點F從O點出發(fā),以2個單位/秒的速度沿y軸正方向運動.B(4,2),以BE為直徑作⊙O1

(1)若點E、F同時出發(fā),設線段EF與線段OB交于點G,試判斷點G與⊙O1的位置關系,并證明你的結論;
(2)在(1)的條件下,連接FB,幾秒時FB與⊙O1相切?
(3)若點E提前2秒出發(fā),點F再出發(fā).當點F出發(fā)后,點E在A點的左側時,設BA⊥x軸于點A,連接AF交⊙O1于點P,試問AP•AF的值是否會發(fā)生變化?若不變,請說明理由并求其值;若變化,請求其值的變化范圍.
(1)連接O1G,
設點E出發(fā)t秒,則E(t,0),F(xiàn)(0,2t);
設直線EF的方程為y=kx+b,則
kt+b=0
b=2t
,
∴解得
k=-2
b=2t
,
∴y=-2x+2t,
∴直線OB的方程為y=
1
2
x;
∵解方程組
y=-2x+2t
y=
1
2
x
,
x=
4
5
t
y=
2
5
t

∴G(
4
5
t,
2
5
t);
∵O1是BE的中點,
∴O1
4+t
2
,1),
∴O1G2=(
4+t
2
-
4
5
t)2+(1-
2
5
t)2=
1
4
t2-2t+5,O1B2=(4-
4+t
2
2+12=
1
4
t2-2t+5,
∴O1G=O1B,點G在⊙O1上.

(2)設t秒時FB與⊙O1相切,那么E(t,0),F(xiàn)(0,2t),∠FBE=90°;
∵EF2=BE2+BF2,EF2=OE2+OF2
∴(4-t)2+22+42+(2-2t)2=t2+(2t)2,
解得t=2.5.

(3)設點F出發(fā)t秒,則E(t+2,0),F(xiàn)(0,2t),
設P(x,y);
∵tan∠FAO=y:(4-x)=2t:4,
∴x=4-
2
t
y
,
∴P(4-
2
t
y
,y).
∵BE為直徑,
∴∠BPE=90°.
∵PE2+BP2=BE2
∴利用兩點間的距離公式把B、P、E、F各點的坐標代入得,
∴y=
4t
t2+4
,
∴x=
4t2+8
t2+4
,
即P(
4t2+8
t2+4
,
4t
t2+4
),
∴AP2=(4-
4t2+8
t2+4
2+(
4t
t2+4
2,
∴AP=
4
t2+4
×
t2+4
,AF=
16+4t2
=2
t2+4

∴AP•AF=8,是不會發(fā)生變化的.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,△ABC內接于⊙O,過點B的切線與CA的延長線相交于點E,且∠BEC=90°,點D在OA的延長線上,AO⊥BC,∠ODC=30°.
(1)求證:DC為⊙O的切線.
(2)若CA=6,求DC的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,點P是⊙O直徑AB的延長線上一點,PC切⊙O于點C,已知OB=3,PB=2.則PC等于(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,AB為⊙O的直徑,BC⊥AB,CP切⊙O于點P,連OC,交⊙O于N,交BP于E,連BN,AP.
(1)求證:BN平分∠PBC.
(2)連AC交BP于M,若AB=BC=4,求tan∠PAC的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,線段AB與⊙O相切于點C,連接OA,OB,已知OA=OB=5cm,AB=8cm,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,⊙O是△ABC的外接圓,且AB=AC=13,BC=24,PA是⊙O的切線,A為切點,割線PBD過圓心,交⊙O于另一點D,連接CD.
(1)求證:PABC;
(2)求⊙O的半徑及CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知一個三角形的周長和面積分別是84、210,一個單位圓在它的內部沿著三邊勻速無摩擦地滾動一周后回到原來的位置(如圖),則這個三角形的內部以及邊界沒有被單位圓滾過的部分的面積是______(結果保留準確值).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

(人教版)已知:如圖,AB=BC,∠ABC=90°,以AB為直徑的⊙O交OC于點D,AD的延長線交BC于點E,過D作⊙O的切線交BC于點F.下列結論:①CD2=CE•CB;②4EF2=ED•EA;③∠OCB=∠EAB;④DF=
1
2
CD.其中正確的有(  )
A.①②③B.②③④C.①③④D.①②④

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,AB切⊙O于點B,AB=4cm,AO=6cm,則⊙O的半徑為______cm.

查看答案和解析>>

同步練習冊答案