【題目】某運(yùn)動(dòng)專營(yíng)店為某廠家代銷一款學(xué)生足球比賽訓(xùn)練鞋(這里的代銷是指廠家先免費(fèi)提供貨源,待貨物售出后再進(jìn)行結(jié)算,未售出的由廠家負(fù)責(zé)處理),當(dāng)每雙鞋的售價(jià)為260元時(shí),月銷售量為63雙為提高經(jīng)營(yíng)利潤(rùn),該專營(yíng)店準(zhǔn)備采取降價(jià)的方式進(jìn)行促銷,經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),每月的銷售量y(雙)與銷售單價(jià)x(元/雙)之間的函數(shù)關(guān)系如圖所示綜合考慮各種因素,每售出雙鞋需支付廠家其他費(fèi)用150元.

1)求出yx之間的函數(shù)關(guān)系式;

2)該運(yùn)動(dòng)專營(yíng)店要獲取最大的月利潤(rùn),售價(jià)應(yīng)定為每雙多少元?并說(shuō)明理由.

320193月底,該專營(yíng)店老板清點(diǎn)了一下倉(cāng)庫(kù),發(fā)現(xiàn)該款學(xué)生足球比賽訓(xùn)練鞋庫(kù)存650雙,若根據(jù)(2)中獲得最大月利潤(rùn)的方式進(jìn)行銷售,12月底能否銷售完這批學(xué)生足球比賽訓(xùn)練鞋?請(qǐng)說(shuō)明理由.

【答案】1 ;(2)該運(yùn)動(dòng)專營(yíng)店要獲取最大的月利潤(rùn),售價(jià)應(yīng)定為每雙250元,見解析;(312月底不能售完,見解析.

【解析】

1)利用待定系數(shù)法求解可得;

2)根據(jù)總利潤(rùn)=單件利潤(rùn)×銷售量列出函數(shù)解析式,并配方成頂點(diǎn)式即可得出最大值;

3)求出在(2)中情況下,即x250時(shí)的銷售量,據(jù)此求得的總銷售量,比較即可得出答案.

解:(1)設(shè)yx的函數(shù)關(guān)系式為ykx+b,

將(22091)、(24077)代入,

得:

解得: ,

yx的函數(shù)關(guān)系式為y=﹣x+245

2)設(shè)月利潤(rùn)為w,

w=(x150y

=(x150)(﹣x+245

=﹣x2502+7000,

∴當(dāng)x250時(shí),w取得最大值,最大值為7000;

故該運(yùn)動(dòng)專營(yíng)店要獲取最大的月利潤(rùn),售價(jià)應(yīng)定為每雙250元;

3)由(2)知,當(dāng)獲得最大利潤(rùn)時(shí),定價(jià)為250/雙,

則每月的銷售量為y=﹣×250+24570

∴總銷售量為70×123)=630,

630650,

12月底不能售完.

故答案為:(1 ;(2)該運(yùn)動(dòng)專營(yíng)店要獲取最大的月利潤(rùn),售價(jià)應(yīng)定為每雙250元,見解析;(312月底不能售完,見解析.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,DEABC的中位線,過(guò)點(diǎn)CCFBDDE的延長(zhǎng)線于點(diǎn)F,連接AF、DC

1)求證:四邊形ADCF是平行四邊形;

2)若ACBC,判斷四邊形ADCF的形狀,無(wú)需說(shuō)明理由;

3)若∠ACB90°,判斷四邊形ADCF的形狀,無(wú)需說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB3,BC4.點(diǎn)P從點(diǎn)A出發(fā),沿ABC運(yùn)動(dòng),速度為每秒1個(gè)單位長(zhǎng)度.點(diǎn)Q從點(diǎn)C出發(fā),沿CAD運(yùn)動(dòng),沿CA運(yùn)動(dòng)時(shí)的速度為每秒1個(gè)單位長(zhǎng)度,沿AD運(yùn)動(dòng)時(shí)的速度為每秒3個(gè)單位長(zhǎng)度.P、Q兩點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn)Q到達(dá)點(diǎn)D時(shí),PQ兩點(diǎn)同時(shí)停止運(yùn)動(dòng).連結(jié)PQ、CP.設(shè)APQ的面積為S,點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(秒).

1)當(dāng)t6時(shí),求AQ的長(zhǎng).

2)當(dāng)點(diǎn)Q沿CA運(yùn)動(dòng)時(shí),用含t的代數(shù)式表示點(diǎn)QAB、BC的距離.

3)求St的函數(shù)關(guān)系式.

4)在點(diǎn)P運(yùn)動(dòng)的過(guò)程中,直接寫出APQCPQ同時(shí)為鈍角三角形時(shí)t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtABC,ABC=90°,AB=BC=,ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)60°,得到MNC,連接BM,BM的長(zhǎng)是__.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,CD4,∠C90°,點(diǎn)B在線段CD上,,沿AB所在的直線折疊△ACB得到△ACB,若△DCB是以BC'為腰的等腰三角形,則線段CB的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,邊長(zhǎng)為1的正方形ABCD,點(diǎn)P為邊AD上一動(dòng)點(diǎn)(不與點(diǎn)A重合).連接BP,將ABP沿直線BP折疊,點(diǎn)A落在點(diǎn)A處,如果點(diǎn)A恰好落在正方形ABCD的對(duì)角線上,則AP的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=﹣x+5x軸交于點(diǎn)B,與y軸交于點(diǎn)C,拋物線y=﹣x2+bx+c與直線y=﹣x+5交于B,C兩點(diǎn),已知點(diǎn)D的坐標(biāo)為(0,3

1)求拋物線的解析式;

2)點(diǎn)MN分別是直線BCx軸上的動(dòng)點(diǎn),則當(dāng)DMN的周長(zhǎng)最小時(shí),求點(diǎn)MN的坐標(biāo),并寫出DMN周長(zhǎng)的最小值;

3)點(diǎn)P是拋物線上一動(dòng)點(diǎn),在(2)的條件下,是否存在這樣的點(diǎn)P,使∠PBA=∠ODN?若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,拋物線y1x2+bx+c經(jīng)過(guò)原點(diǎn),交x軸于另一點(diǎn)A4,0),頂點(diǎn)為P

1)求拋物線y1的解析式和點(diǎn)P的坐標(biāo);

2)如圖2,點(diǎn)Q0,a)為y軸正半軸上一點(diǎn),過(guò)點(diǎn)Qx軸的平行線交拋物線y1x2+bx+c于點(diǎn)M,N,將拋物線y1x2+bx+c沿直線MN翻折得到新的拋物線y2,點(diǎn)P落在點(diǎn)B處,若四邊形BMPN的面積等于,求a的值及點(diǎn)B的坐標(biāo);

3)如圖3,在(2)的條件下,在第一象限的拋物線y1x2+bx+c上取一點(diǎn)C,連接OC,作CDOBD,BEOCx軸于E,連接DE,若∠BEO=∠DEA,求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年國(guó)務(wù)院機(jī)構(gòu)改革不再保留國(guó)家衛(wèi)生和計(jì)劃生育委員會(huì),組建國(guó)家衛(wèi)生健康委員會(huì),在修正人口普查數(shù)據(jù)中的低齡人口漏登后,我們估計(jì)了1982-2030年育齡婦女情況.1982年中國(guó)15-49歲育齡婦女規(guī)模為2.5億,到2011年達(dá)3.8億人的峰值,2017年降至3.5億,預(yù)計(jì)到2030年將降至3.0.則數(shù)據(jù)2.5億、3.8億、3.5億、3.0億的中位數(shù)、平均數(shù)、方差分別是( )

A.3.25億、3.2億、0.245B.3.65億、3.2億、0.98

C.3.25億、3.2億、0.98D.3.65億、3億、0.245

查看答案和解析>>

同步練習(xí)冊(cè)答案