【題目】如圖, 的直徑,點(diǎn)上一點(diǎn),若∠BAC=∠CAM,過(guò)點(diǎn)作直線垂直于射線AM,垂足為點(diǎn)D.

(1)試判斷的位置關(guān)系,并說(shuō)明理由;

(2)若直線的延長(zhǎng)線相交于點(diǎn) 的半徑為3,并且.求的長(zhǎng).

【答案】1)直線CDO相切,理由見(jiàn)解析(2CE=

【解析】試題分析:

試題解析:(1)觀察圖形可得:直線CDO相切,連接OC.只需要根據(jù)條件證明OCCD即可;(2)根據(jù)條件可得COE=2CAB=,然后在RtCOE中利用特殊角的三角函數(shù)值可求出的長(zhǎng).

1)解:直線CD⊙O相切. 1

理由如下:連接OC

∵OA=OC

∴∠BAC=∠OCA

∵∠BAC=∠CAM

∴∠OCA=∠CAM

∴OC∥AM 5

∵CD⊥AM

∴OC⊥CD

直線相切. 7

2)解:

∴∠COE=2CAB=

RtCOE中,OC=3,CE=OC·tan=10

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】3a(﹣2a)2=(
A.﹣12a3
B.﹣6a2
C.12a3
D.6a2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(10分)如圖,已知⊙O上依次有AB、CD四個(gè)點(diǎn),=,連接ABAD、BD,弦AB不經(jīng)過(guò)圓心O,延長(zhǎng)ABE,使BE=AB,連接ECFEC的中點(diǎn),連接BF

1)求證:BF=BD;

2)設(shè)GBD的中點(diǎn),探索:在⊙O上是否存在點(diǎn)P(不同于點(diǎn)B),使得PG=PF?并說(shuō)明PBAE的位置關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知長(zhǎng)方形的面積為4a2-4b2,如果它的一邊長(zhǎng)為a+b,則它的周長(zhǎng)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各式從左到右的變形中,是因式分解的為( 。

A. ab+ac+dab+c)+dB. x+2)(x2)=x24

C. 6ab2a3bD. x28x+16=(x42

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)D在△ABC的BC邊上,DE∥AC交AB于E,DF∥AB交AC于F.

(1)求證:AE=DF;

(2)若AD平分∠BAC,試判斷四邊形AEDF的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為3,E,F 分別是AB,BC邊上的點(diǎn),且∠EDF=45°.△DAE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°,得到△DCM.

1)求證:EF=FM;

2)當(dāng)AE=1時(shí),求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為圓心的圓過(guò)點(diǎn)A(13,0),直線y=kx3k+4與O交于B、C兩點(diǎn),則弦BC的長(zhǎng)的最小值為( ).

A.22 B.24 C.10 D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種零件,標(biāo)明要求是φ20±0.02 mm(φ表示直徑,單位:毫米),經(jīng)檢查,一個(gè)零件的直徑是19.9 mm,該零件 (填“合格”或“不合格”).

查看答案和解析>>

同步練習(xí)冊(cè)答案